Each snowflake is algorithmically generated using some randomness to create infinitely many snowflakes where no two are exactly alike.
Mathematica code:
rr[n_] := (SeedRandom[n]; RandomReal[]) H = Table[{Cos[n*Pi/3], Sin[n*Pi/3]}, {n, 0, 5, 1}]; SnowFlake[Q_, x_, y_, R_, S_, k_, h_, o_, s_, N_, PR_, IS_] := Graphics[{ Rotate[ Translate[ Scale[ Table[ Table[ Rotate[ Translate[ Scale[ Table[ {AbsoluteThickness[k*h^(n - 1)], Opacity[o], White, Line[ {{0, 0}, H[[i]]}]}, {i, 1, 6, 1}], s^(n - 1)], {If[n == 1, 0, rr[Q*n]], 0}], If[n == 1, 0, (j + rr[Q*n])*Pi/3], {0, 0}], {j, 0, 5, 1}], {n, 1, N, 1}], S], {x, y}], R, {x, y}]}, PlotRange -> PR, ImageSize -> IS, Background -> Black] Manipulate[ SnowFlake[Q, 0, 0, rr[2 Q] Pi/3, 1, k, h, o, s, N, 2, 500], {Q, 1, 1000, 1}, {{k, 1}, 0, 2}, {{h, .9}, 1, 0}, {{o, .75}, 1, 0}, {{s, .75}, 1, 0}, {{N, 10}, 1, 20, 1}] Manipulate[ GraphicsGrid[ Table[ SnowFlake[Q*W, 0, 0, (-1)^(Round[rr[4 Q*W]]) (t + rr[2 Q*W]) Pi/3, 1, 1, .85, .8, .5 + .2 rr[3 Q*W], 15, 2, 100], {Q, q, q+6, 1}, {W, w, w+4, 1}], Background -> Black, ImageSize -> {500, 700}, AspectRatio->7/5], {q, 1, 100, 1}, {w, 1, 100, 1}, {t, 0, 1 - 1/25, 1/25}]
Jet Plane View of a Shuttle Launch
Gucci Mane as “The Waterfall”, 2013
Photograph
©™
Miracleman 11 (1987)
Illustration by John Totleben.
(1996, pixel art, .gif)
King of the Monster 2: The Next Thing, Neo Geo.
Bbbbjkkj
Dirty Harry
Alphonse Mucha, Monaco