Abstract Algebra Things That Are Good:

abstract algebra things that are good:

groups. i love taking inverses

fields. i LOVE taking inverse

banach algebras. i love having a notion of distance, and also being a complete space

lie groups. i dont know anything about them yet. but they seem so cool. technically groups

abstact algebra things that are bad:

rings. god i hate rings so much. theres like a thousand different kinds of rings, some of which are subsets of each other, and some of which have different names but are actually the same.

More Posts from Bsdndprplplld and Others

3 years ago
Pick A Point Inside A Triangle And Drop Perpendicular Projections Onto The Sides. These Define Another

Pick a point inside a triangle and drop perpendicular projections onto the sides. These define another triangle. Repeat, with the same point but within the new triangle. Do the same thing once more. The fourth triangle now has the same angles as the first one, although it’s much smaller and it’s rotated.

2 years ago

25 XII 2022

this chunk of the semester is finally over, sweet jesus I'm so exhausted. I'm getting the well-deserved rest and later catching up with all the things I put on my to-do list that I kinda learned but not really

the test I had last week went fine. frankly I expected more from it after solving more than 50 problems during my prep, but I scored 74%, which is objectively great and more than I predicted after submitting my solutions

here is my math plan for the break:

25 XII 2022

in algebraic methods I started falling behind a few weeks ago when I missed two lectures while being sick. they were about resolutions, derived functors and group homology and afterwards I wasn't really able to stay on top of my game like before. high time to get back on track. in commutative algebra I was doing ok, but there are some topics I neglected: finite and integral maps and Noether's normalization. for complex analysis everything is great until we introduced the order of growth and recently we've been doing some algebraic number theory, which btw is a huge disappointment. don't get me wrong, I understand the significance of Riemann's ζ, but the problems we did all consisted of subtle inequalities and a lot of technical details. I am doing mainly algebraic stuff to avoid these kind of things lol

when we were doing simplicial sets I stumbled upon some formulas for the simplicial set functor and its geometric realization and I thought it to be a nice exercise to probe them, so here it is:

25 XII 2022
25 XII 2022

I won't know if this proof actually works until I attend office hours to find out, but I am satisfied with the work I put into it

I already started making some notes on the derived functors

25 XII 2022

other than that I have this nice book that will help me prepare for writing my thesis, so I'd like to take a look at that too

25 XII 2022

as for the non-math plans, I am rewatching good doctor. my brain has this nice property that after a year has passed since finishing a show I no longer remember anything, the exponential distribution is relatable like that. this allows endless recycling of my favourite series, I just need to wait

I wish you all a pleasant break and I hope everyone is getting some rest like I am


Tags
2 years ago

tips for studying math

I thought I could share what I learned about studying math so far. it will be very subjective with no scientific sources, pure personal experience, hence one shouldn't expect all of this to work, I merely hope to give some ideas

1. note taking

some time ago I stopped caring about making my notes pretty and it was a great decision – they are supposed to be useful. moreover, I try to write as little as possible. this way my notes contain only crucial information and I might actually use them later because finding things becomes much easier. there is no point in writing down everything, a lot of the time it suffices to know where to find things in the textbook later. also, I noticed that taking notes doesn't actually help me remember, I use it to process information that I'm reading, and if I write down too many details it becomes very chaotic. when I'm trying to process as much as possible in the spot while reading I'm better at structuring the information. so my suggestion would be to stop caring about the aesthetics and try to write down only what is the most important (such as definitions, statements of theorems, useful facts)

2. active learning

do not write down the proof as is, instead write down general steps and then try to fill in the details. it would be perfect to prove everything from scratch, but that's rarely realistic, especially when the exam is in a few days. breaking the proof down into steps and describing the general idea of each step naturally raises questions such as "why is this part important, what is the goal of this calculation, how to describe this reasoning in one sentence, what are we actually doing here". sometimes it's possible to give the proof purely in words, that's also a good idea. it's also much more engaging and creative than passively writing things down. another thing that makes learning more active is trying to come up with examples for the definitions

3. exercises

many textbooks give exercises between definitions and theorem, doing them right away is generally a good idea, that's another way to make studying more active. I also like to take a look at the exercises at the end of the chapter (if that's the case) once in a while to see which ones I could do with what I already learned and try to do them. sometimes it's really hard to solve problems freshly after studying the theory and that's what worked out examples are for, it helps. mamy textbooks offer solutions of exercises, I like to compare the "official" ones with mine. it's obviously better than reading the solution before solving the problem on my own, but when I'm stuck for a long time I check if my idea for the solution at least makes sense. if it's similar to the solution from the book then I know I should just keep going

4. textbooks and other sources

finding the right book is so important. I don't even want to think about all the time I wasted trying to work with a book that just wasn't it. when I need a textbook for something I google "best textbooks for [topic]" and usually there is already a discussion on MSE where people recommend sources and explain why they think that source is a good one, which also gives the idea of how it's written and what to expect. a lot of professors share their lecture/class notes online, which contain user-friendly explenations, examples, exercises chosen by experienced teachers to do in their class, sometimes you can even find exercises with solutions. using the internet is such an important skill

5. studying for exams

do not study the material in a linear order, instead do it by layers. skim everything to get the general idea of which topics need the most work, which can be skipped, then study by priority. other than that it's usually better to know the sketch of every proof than to know a half of them in great detail and the rest not at all. it's similar when it comes to practice problems, do not spend half of your time on easy stuff that could easily be skipped, it's better to practice a bit of everything than to be an expert in half of the topics and unable to solve easy problems from the rest. if the past papers are available they can be a good tool to take a "mock exam" after studying for some time, it gives an opoortunity to see, again, which topics need the most work

6. examples and counterexamples

there are those theorems with statements that take up half of the page because there are just so many assumptions. finding counterexamples for each assumption usually helps with that. when I have a lot of definitions to learn, thinking of examples for them makes everything more specific therefore easier to remember

7. motivation

and by that I mean motivation of concepts. learning something new is much easier if it's motivated with an interesting example, a question, or application. it's easier to learn something when I know that it will be useful later, it's worth it to try to make things more interesting

8. studying for exams vs studying longterm

oftentimes it is the case that the exam itself requires learning some specific types of problems, which do not really matter in the long run. of course, preparing for exams is important, but keep in mind that what really matters is learning things that will be useful in the future especially when they are relevant to the field of choice. just because "this will not be on the test" doesn't always mean it can be skipped

ok I think that's all I have for now. I hope someone will find these helpful and feel free to share yours

1 year ago

funfact: in poland nobody really cares about eye contact, maybe other than people who want to have an intimate conversation with you like you'd have during a date or something

I was genuinely suprised when I learned that avoiding eye contact is a symptom of autism, because I didn't notice anybody ever trying to make it. I started paying attention to this whole thing after my diagnosis, where the doctor asked if I always look at the walls while talking to people. it turns out that people indeed are trying to look into my eyes even during the most mundane and routine interactions, but nobody (other than my now ex boyfriend who was so sad when he found out that I perceive eye contact as a threat) ever pointed it out as something that I should do. but then I see (presumably american or just non-polish) people talking about being offended by someone not making eye contact and I experience a massive cultural shock lol

girl i am not looking at your tits i prommy i just hate eye contact

3 years ago

10-12 VIII 2021

finished the basics of the measure theory and god am i in love

sleep: ok

concentration: good

phone time: good

yeah so now i know what a measurable set and a measurable function is, i'm on my way to lebesgue integration. however, i don't have the intuition for measurable functions yet, just the basics. there are those two theorems that i merely vaguely understand and idk barely can touch them. one of them is lusin, the other one is frechet. they seem very important as they deal with continuity of a function in the context of measurability. and do we love continuous functions my dude yes we do

tomorrow i plan to solve some problems concerning measurable functions and then do topo. i must admit, measure theory devoured me entirely recently and i had a break from topo. gotta fix that. and possibly do some coding


Tags
1 year ago

"numbers don't lie" the real numbers are literally a lie group

2 years ago

are you a girl?

I am, but I thought that was obvious given that I have a picture of me in my icon.

3 years ago

reverse gaslighting where i pretend to know exactly what you are talking about

3 years ago
Mood: Filling An Open Set With Dyadic Cubes And Pretending This Is Studying Measure Theory

mood: filling an open set with dyadic cubes and pretending this is studying measure theory


Tags
  • meto4
    meto4 liked this · 2 years ago
  • germax26
    germax26 liked this · 2 years ago
  • subject-to
    subject-to liked this · 2 years ago
  • qhd4
    qhd4 liked this · 2 years ago
  • kenkii
    kenkii liked this · 2 years ago
  • probablymoons
    probablymoons liked this · 2 years ago
  • grapeszn
    grapeszn liked this · 2 years ago
  • seaswells
    seaswells liked this · 2 years ago
  • cookies-over-yonder
    cookies-over-yonder liked this · 2 years ago
  • faaun
    faaun reblogged this · 2 years ago
  • demonicapex
    demonicapex reblogged this · 2 years ago
  • demonicapex
    demonicapex liked this · 2 years ago
  • rebuildthelibraryofalexandria
    rebuildthelibraryofalexandria liked this · 2 years ago
  • yoneda-emma
    yoneda-emma liked this · 2 years ago
  • mathematical-cheese
    mathematical-cheese reblogged this · 2 years ago
  • mathematical-cheese
    mathematical-cheese liked this · 2 years ago
  • naga-strange
    naga-strange liked this · 2 years ago
  • p-locally
    p-locally liked this · 2 years ago
  • luicosas
    luicosas liked this · 2 years ago
  • bmaf-luml
    bmaf-luml liked this · 2 years ago
  • phoenixdiedaweekago
    phoenixdiedaweekago liked this · 2 years ago
  • bsdndprplplld
    bsdndprplplld reblogged this · 2 years ago
  • faaun
    faaun liked this · 2 years ago
  • mybrothersnameisjeff
    mybrothersnameisjeff liked this · 2 years ago
  • bluekino
    bluekino liked this · 2 years ago
  • perfectly-generic-object
    perfectly-generic-object liked this · 2 years ago
  • nodecahedron
    nodecahedron liked this · 2 years ago
  • what-should-username
    what-should-username liked this · 2 years ago
  • 0xjuro
    0xjuro reblogged this · 2 years ago
  • void-of-self
    void-of-self liked this · 2 years ago
  • enginue
    enginue liked this · 2 years ago
  • catchaspark
    catchaspark liked this · 2 years ago
  • jvvvm
    jvvvm liked this · 2 years ago
  • ivydecoherent
    ivydecoherent liked this · 2 years ago
  • hardlocke
    hardlocke reblogged this · 2 years ago
  • door-keeper
    door-keeper liked this · 2 years ago
  • ariahow
    ariahow liked this · 2 years ago
  • cthulhubert
    cthulhubert reblogged this · 2 years ago
  • raginrayguns
    raginrayguns reblogged this · 2 years ago
  • thahxa
    thahxa reblogged this · 2 years ago
  • thahxa
    thahxa liked this · 2 years ago
  • perrydeplatypus
    perrydeplatypus liked this · 2 years ago
bsdndprplplld - you can't comb a hairy ball
you can't comb a hairy ball

⁕ pure math undergrad ⁕ in love with anything algebraic ⁕

292 posts

Explore Tumblr Blog
Search Through Tumblr Tags