NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko will return from a year-long mission to the International Space Station on Tuesday, March 1. Research conducted during this mission will help prepare us for future voyages beyond low-Earth orbit.
On Friday, March 4 at 11 p.m. EST, we will host a Reddit AMA with scientists and medical doctors from our Johnson Space Center. During the AMA, they will answer your questions about everything from how microgravity affects the human body to how astronauts’ food intake is closely monitored while on-orbit. Ask us anything about the science behind the One Year Mission!
Participants include:
Julie Robinson, Ph.D., NASA’s Chief Scientist for the International Space Station
John Charles, Ph.D., Associate Manager for International Science for NASA’s Human Research Program
Scott M. Smith, Ph.D., Nutritional Biochemistry Laboratory Manager for NASA’s Human Research Program
Dr. Shannan Moynihan, NASA Flight Surgeon
Mark Guilliams, Strength and Conditioning Coach
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
❝Sou o povo a triunfar
Sou a força popular
Sou raiz, tradição e saber
A festa do meu boi bumbá❞
Operated by our Goddard Space Flight Center in Greenbelt, Maryland, this communications system enables all types of Earth-to-astronaut communication. The Space Network is a complex system of ground station terminals and satellites. The satellites, called ‘Tracking and Data Relay Satellites’ or TDRS, provide continuous communications for human spaceflight 24/7/365. The information this network relays includes astronaut communication with Mission Control in Houston, posting live video of spacewalks and live interviews with schools, even posting Tweets on Twitter and doing Facebook posts. The Space Network can even broadcast live 4K, ultra-HD video right from the station. You can now watch an astronaut eat a space taco in high definition. WHAT A TIME TO BE ALIVE!
Astronauts on the Space Station perform experiments on the station that will enable our Journey to Mars and other future human space missions. For example, astronaut Peggy Whitson works on a bone cell study that could lead to better preventative care or therapeutic treatments for people suffering bone loss as a result of bone diseases like osteopenia and osteoporosis, or for patients on prolonged bed rest. All that fantastic data is sent back to Earth via our Space Network for scientists around the world to analyze and build on.
The Space Network not only lets us communicate with the astronauts, it also tracks the ‘health’ of the spacecraft, be it the International Space Station where the astronauts are living, a cargo vehicle servicing the space station, or even, in the near future, crewed vehicles to other worlds. We deliver data on a spacecraft’s state of health, from power generation levels and avionics status to carbon dioxide and oxygen levels, and more to Mission Control 24/7/365.
The International Space Station Is pretty big, but space is bigger. The Space Network enables flight controllers on the ground to provide a GPS-type service for the Space Station, letting them track the exact location of the space station at all times as it orbits the Earth. It also allows us Earth-bound folk to get real-time text updates when the Space Station is flying overhead. If you want to track the station, sign up here: https://spotthestation.nasa.gov
Goddard’s Space Network also controls all the communications for all the missions that go to the space station. That includes command and telemetry services during launches, free flight, berthing and un-berthing to the station, as well as re-entry and landing back to Earth.
It’s also helping to test vehicles that will carry astronauts to other worlds. Currently, they are working with teams for our Space Launch System and commercial crew vehicles. The first flights for these vehicles will occur in 2018 and 2019, setting us on the road to Journey to Mars! This image shows the Orion capsule that will aid in our continuous march into space.
We’re continuing to grow! Watch out for the launch of a new TDRS spacecraft in August 2017! TDRS-M is coming. Check out more info here and join our countdown to TDRS launch: https://tdrs.gsfc.nasa.gov.
Pan, e outras luas como ela, têm um profundo impacto nos anéis de Saturno. Os efeitos podem variar, desde a criação de gaps, a geração de novos pequenos anéis, até o surgimento de ondas verticais acima e abaixo do plano dos anéis. Todos os esses efeitos, produzidos pela gravidade são vistos nessa imagem.
Pan, um satélite de Saturno com 28 km de diâmetro, observado no centro da imagem, mantém o chamado Encke Gap, na sua órbita, mas também ajuda a criar e a formar os estreitos anéis que aparecem no Encke Gap. Dois pequenos anéis apagados nessa imagem, podem ser vistos, abaixo e à direita de Pan.
Muitos satélites, incluindo Pan, criam ondas em pontos distantes nos anéis de Saturno, onde as partículas dos anéis e as luas têm órbitas em ressonância. Muitas dessas ondas são visíveis nessa imagem como agrupamentos estreitos de bandas mais escuras e mais escuras. Estudando essas ondas, podem fornecer informações sobre as condições locais dos anéis.
Essa bela imagem foi feita com a câmera da sonda Cassini apontada na direção do lado não iluminado dos anéis, a cerca de 22 graus abaixo do plano dos anéis. A imagem foi feita na luz visível com a câmera de ângulo estreito da Cassini, no dia 30 de Abril de 2016.
A imagem foi obtida a uma distância de cerca de 373000 quilômetros de Saturno, e com o conjunto Sol-Saturno-Cassini em fase com ângulo de 140 graus. A escala da imagem é de 2 quilômetros por pixel.
A missão Cassini é um projeto cooperativo da NASA, da ESA, e da Agência Espacial Italiana. O Laboratório de Propulsão a Jato, uma divisão do Instituto de Tecnologia da Califórnia, em Pasadena, gerencia a missão para o Science Mission Directorate da NASA em Washington. O módulo orbital e suas duas câmeras de bordo foram desenhadas, desenvolvidas e montadas no JPL. O centro de operações de imageamento fica baseado no Space Science Institute em Boulder, no Colorado.
Para mais informações sobre a missão da Cassini-Huygens, visite http://saturn.jpl.nasa.gov e http://www.nasa.gov/cassini. O site da equipe de imageamento da Cassini é http://ciclops.org.
Fonte:
http://www.nasa.gov/image-feature/jpl/pia20490/pandemonium
Qr�Q ��
Here are a few things you should know about our solar system this week:
1. Gearing Up for a Grand Finale
There’s just a year left until the Cassini mission begins its Grand Finale – the final phase of its mission, during which the spacecraft will dive repeatedly between the planet and the rings. To get ready, the Cassini team has launched an enhanced, mobile device-friendly version of the mission website. The site includes information about Cassini, Saturn, the moons and the rings – but it also tells the human stories behind one of the most ambitions expeditions of all time.
2.Caught in Transit
On Monday, May 9, the planet Mercury will cross directly in front of the sun, an event that hasn’t occurred since 2006 and won’t happen again until 2019. Find out how to watch HERE.
3. A Moon for Makemake
Our Hubble Space Telescope has spotted a small, dark moon orbiting Makemake (pronounced “MAH-kay MAH-kay). Make make is the second brightest icy dwarf planet – after Pluto – in the faraway Kuiper Belt.
4. The Age of the Aquarids
The Eta Aquarid meteor shower is the first of two showers that occur each year as a result of Earth passing through dust released by Halley’s Comet. This year, it should peak on the night of May 5/6. Get tips for watching HERE.
5. The Southern Lights of Saturn
On May 4, Cassini will reach periapse, the closest point to Saturn in the spacecraft’s orbit. At about this time, Cassini’s cameras will monitor Saturn’s south polar aurorae, and also image the bright limb of the planet to better understand its upper haze layers.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Independente de estar classificado ou não, sempre serei #Cruzeiro 🔵✨
A Descoberta de Urano - 13 de Março de 1781
No dia 13 de Março de 1781, William Herschel descobria Urano, o sétimo planeta do Sistema Solar, o primeiro descoberto por um telescópio, veja aí, um resumo da bela história da descoberta desse planeta.
The path through the solar system is a rocky road. Asteroids, comets, Kuiper Belt Objects—all kinds of small bodies of rock, metal and ice are in constant motion as they orbit the Sun. But what’s the difference between them, anyway? And why do these miniature worlds fascinate space explorers so much? The answer is profound: they may hold the keys to better understanding where we all come from. Here’s 10 things to know about the solar system this week:
This picture of Eros, the first of an asteroid taken from an orbiting spacecraft, came from our NEAR mission in February 2000. Image credit: NASA/JPL
Asteroids are rocky, airless worlds that orbit our Sun. They are remnants left over from the formation of our solar system, ranging in size from the length of a car to about as wide as a large city. Asteroids are diverse in composition; some are metallic while others are rich in carbon, giving them a coal-black color. They can be “rubble piles,” loosely held together by their own gravity, or they can be solid rocks.
Most of the asteroids in our solar system reside in a region called the main asteroid belt. This vast, doughnut-shaped ring between the orbits of Mars and Jupiter contains hundreds of thousands of asteroids, maybe millions. But despite what you see in the movies, there is still a great deal of space between each asteroid. With all due respect to C3PO, the odds of flying through the asteroid belt without colliding with one are actually pretty good.
Other asteroids (and comets) follow different orbits, including some that enter Earth’s neighborhood. These are called near-Earth objects, or NEOs. We can actually keep track of the ones we have discovered and predict where they are headed. The Minor Planet Center (MPC) and Jet Propulsion Laboratory’s Center for Near Earth Object Studies (CNEOS) do that very thing. Telescopes around the world and in space are used to spot new asteroids and comets, and the MPC and CNEOS, along with international colleagues, calculate where those asteroids and comets are going and determine whether they might pose any impact threat to Earth.
For scientists, asteroids play the role of time capsules from the early solar system, having been preserved in the vacuum of space for billions of years. What’s more, the main asteroid belt may have been a source of water—and organic compounds critical to life—for the inner planets like Earth.
The nucleus of Comet 67P/Churyumov-Gerasimenko, as seen in January 2015 by the European Space Agency’s Rosetta spacecraft. Image credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comets also orbit the Sun, but they are more like snowballs than space rocks. Each comet has a center called a nucleus that contains icy chunks of frozen gases, along with bits of rock and dust. When a comet’s orbit brings it close to the Sun, the comet heats up and spews dust and gases, forming a giant, glowing ball called a coma around its nucleus, along with two tails – one made of dust and the other of excited gas (ions). Driven by a constant flow of particles from the Sun called the solar wind, the tails point away from the Sun, sometimes stretching for millions of miles.
While there are likely billions of comets in the solar system, the current confirmed number is 3,535. Like asteroids, comets are leftover material from the formation of our solar system around 4.6 billion years ago, and they preserve secrets from the earliest days of the Sun’s family. Some of Earth’s water and other chemical constituents could have been delivered by comet impacts.
An artist re-creation of a collision in deep space. Image credit: NASA/JPL-Caltech
Meteoroids are fragments and debris in space resulting from collisions among asteroids, comets, moons and planets. They are among the smallest “space rocks.” However, we can actually see them when they streak through our atmosphere in the form of meteors and meteor showers.
This photograph, taken by an astronaut aboard the International Space Station, provides the unusual perspective of looking down on a meteor as it passes through the atmosphere. The image was taken on Aug. 13, 2011, during the Perseid meteor shower that occurs every August. Image credit: NASA
Meteors are meteoroids that fall through Earth’s atmosphere at extremely high speeds. The pressure and heat they generate as they push through the air causes them to glow and create a streak of light in the sky. Most burn up completely before touching the ground. We often refer to them as “shooting stars.” Meteors may be made mostly of rock, metal or a combination of the two.
Scientists estimate that about 48.5 tons (44,000 kilograms) of meteoritic material falls on Earth each day.
The constellation Orion is framed by two meteors during the Perseid shower on Aug. 12, 2018 in Cedar Breaks National Monument, Utah. Image credit: NASA/Bill Dunford
Several meteors per hour can usually be seen on any given night. Sometimes the number increases dramatically—these events are termed meteor showers. They occur when Earth passes through trails of particles left by comets. When the particles enter Earth’s atmosphere, they burn up, creating hundreds or even thousands of bright streaks in the sky. We can easily plan when to watch meteor showers because numerous showers happen annually as Earth’s orbit takes it through the same patches of comet debris. This year’s Orionid meteor shower peaks on Oct. 21.
An SUV-sized asteroid, 2008TC#, impacted on Oct. 7, 2008, in the Nubian Desert, Northern Sudan. Dr. Peter Jenniskens, NASA/SETI, joined Muawia Shaddas of the University of Khartoum in leading an expedition on a search for samples. Image credit: NASA/SETI/P. Jenniskens
Meteorites are asteroid, comet, moon and planet fragments (meteoroids) that survive the heated journey through Earth’s atmosphere all the way to the ground. Most meteorites found on Earth are pebble to fist size, but some are larger than a building.
Early Earth experienced many large meteorite impacts that caused extensive destruction. Well-documented stories of modern meteorite-caused injury or death are rare. In the first known case of an extraterrestrial object to have injured a human being in the U.S., Ann Hodges of Sylacauga, Alabama, was severely bruised by a 8-pound (3.6-kilogram) stony meteorite that crashed through her roof in November 1954.
The largest object in the asteroid belt is actually a dwarf planet, Ceres. This view comes from our Dawn mission. The color is approximately as it would appear to the eye. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Don’t let the name fool you; despite their small size, dwarf planets are worlds that are just as compelling as their larger siblings. Dwarf planets are defined by astronomers as bodies massive enough to be shaped by gravity into a round or nearly round shape, but they don’t have enough of their own gravitational muscle to clear their path of other objects as they orbit the Sun. In our solar system, dwarf planets are mostly found in the Kuiper Belt beyond Neptune; Pluto is the best-known example. But the largest object in the asteroid belt is the dwarf planet Ceres. Like Pluto, Ceres shows signs of active geology, including ice volcanoes.
The Kuiper Belt is a disc-shaped region beyond Neptune that extends from about 30 to 55 astronomical units – that is, 30 to 55 times the distance from the Earth to the Sun. There may be hundreds of thousands of icy bodies and a trillion or more comets in this distant region of our solar system.
An artist’s rendition of the New Horizons spacecraft passing by the Kuiper Belt Object MU69 in January 2019. Image credits: NASA/JHUAPL/SwRI
Besides Pluto, some of the mysterious worlds of the Kuiper Belt include Eris, Sedna, Quaoar, Makemake and Haumea. Like asteroids and comets, Kuiper Belt objects are time capsules, perhaps kept even more pristine in their icy realm.
This chart puts solar system distances in perspective. The scale bar is in astronomical units (AU), with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the Sun to the Earth, which is about 93 million miles or 150 million kilometers. Neptune, the most distant planet from the Sun, is about 30 AU. Image credit: NASA/JPL-Caltech
The Oort Cloud is a group of icy bodies beginning roughly 186 billion miles (300 billion kilometers) away from the Sun. While the planets of our solar system orbit in a flat plane, the Oort Cloud is believed to be a giant spherical shell surrounding the Sun, planets and Kuiper Belt Objects. It is like a big, thick bubble around our solar system. The Oort Cloud’s icy bodies can be as large as mountains, and sometimes larger.
This dark, cold expanse is by far the solar system’s largest and most distant region. It extends all the way to about 100,000 AU (100,000 times the distance between Earth and the Sun) – a good portion of the way to the next star system. Comets from the Oort Cloud can have orbital periods of thousands or even millions of years. Consider this: At its current speed of about a million miles a day, our Voyager 1 spacecraft won’t reach the Oort Cloud for more than 300 years. It will then take about 30,000 years for the spacecraft to traverse the Oort Cloud, and exit our solar system entirely.
This animation shows our OSIRIS-REx spacecraft collecting a sample of the asteroid Bennu, which it is expected to do in 2020. Image credit: NASA/Goddard Space Flight Center
Fortunately, even though the Oort Cloud is extremely distant, most of the small bodies we’ve been discussing are more within reach. In fact, NASA and other space agencies have a whole flotilla of robotic spacecraft that are exploring these small worlds up close. Our mechanical emissaries act as our eyes and hands in deep space, searching for whatever clues these time capsules hold.
A partial roster of our current or recent missions to small, rocky destinations includes:
OSIRIS-REx – Now approaching the asteroid Bennu, where it will retrieve a sample in 2020 and return it to the Earth for close scrutiny.
New Horizons – Set to fly close to MU69 or “Ultima Thule,” an object a billion miles past Pluto in the Kuiper Belt on Jan. 1, 2019. When it does, MU69 will become the most distant object humans have ever seen up close.
Psyche – Planned for launch in 2022, the spacecraft will explore a metallic asteroid of the same name, which may be the ejected core of a baby planet that was destroyed long ago.
Lucy – Slated to investigate two separate groups of asteroids, called Trojans, that share the orbit of Jupiter – one group orbits ahead of the planet, while the other orbits behind. Lucy is planned to launch in 2021.
Dawn – Finishing up a successful seven-year mission orbiting planet-like worlds Ceres and Vesta in the asteroid belt.
Plus these missions from other space agencies:
The Japan Aerospace Exploration Agency (JAXA)’s Hayabusa2– Just landed a series of small probes on the surface of the asteroid Ryugu.
The European Space Agency (ESA)’s Rosetta – Orbited the comet 67P/Churyumov-Gerasimenko and dispatched a lander to its surface.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Nessa quarta-feira, dia 27 de Julho de 2016, às 6:00 da manhã, hora de Brasília, o Electrical Support System Processor Unit, ou ESS, da sonda Rosetta será desligado.
O ESS, é a interface usada para realizar, ou pelo menos tentar as comunicações entre a sonda e o módulo Philae, que permanece em silêncio desde 9 de Julho de 2015.
Esse desligamento já é um preparativo e faz parte das ações que serão realizadas para o encerramento da missão da sonda Rosetta na órbita do cometa 67P/Churyumov-Gerasimenko.
A sonda encontra-se a mais de 520 milhões de quilômetros de distância do Sol e já começa a enfrentar uma perda significante de potência.
Para manter a sonda ativa cientificamente pelos próximos 2 meses, é necessário iniciar o desligamento de alguns sistemas.
Como o módulo Philae, não se comunica desde Julho de 2015, e já foi considerado como estando em hibernação eterna, mesmo com a sonda Rosetta passando bem perto do cometa e tentando comunicação, o ESS foi escolhido para ser desligado, encerrando assim de uma vez a missão do módulo Philae.
Descanse em paz Philae.
(via https://www.youtube.com/watch?v=uNbKPaNob0k)