Brienz, Switzerland (by Patryk Sadowski)
Juliet - Marshall Beach, San Francisco
Follow the Ballerina Project on Facebook, Instagram, YouTube, Twitter & Pinterest
For information on purchasing Ballerina Project limited edition prints
Before the creation of humanity, the Greek gods won a great battle against a race of giants called the Titans. Most Titans were destroyed or driven to the eternal hell of Tartarus. But the Titan Prometheus, whose name means foresight, persuaded his brother Epimetheus to fight with him on the side of the gods.
As thanks, Zeus entrusted the brothers with the task of creating all living things. Epimetheus was to distribute the gifts of the gods among the creatures. To some, he gave flight; to others, the ability to move through water or race through grass. He gave the beasts glittering scales, soft fur, and sharp claws.
Meanwhile, Prometheus shaped the first humans out of mud. He formed them in the image of the gods, but Zeus decreed they were too remain mortal and worship the inhabitants of Mount Olympus from below. Zeus deemed humans subservient creatures vulnerable to the elements and dependent on the gods for protection. However, Prometheus envisioned his crude creations with a greater purpose. So when Zeus asked him to decide how sacrifices would be made, the wily Prometheus planned a trick that would give humans some advantage. He killed a bull and divided it into two parts to present to Zeus. On one side, he concealed the succulent flesh and skin under the unappealing belly of the animal. On the other, he hid the bones under a thick layer of fat. When Zeus chose the seemingly best portion for himself, he was outraged at Prometheus’s deception.
Fuming, Zeus forbade the use of fire on Earth, whether to cook meat or for any other purpose. But Prometheus refused to see his creations denied this resource. And so, he scaled Mount Olympus to steal fire from the workshop of Hephaestus and Athena. He hid the flames in a hollow fennel stalk and brought it safely down to the people. This gave them the power to harness nature for their own benefit and ultimately dominate the natural order.
With fire, humans could care for themselves with food and warmth. But they could also forge weapons and wage war. Prometheus’s flames acted as a catalyst for the rapid progression of civilization. When Zeus looked down at this scene, he realized what had happened. Prometheus had once again wounded his pride and subverted his authority.
Furious, Zeus imposed a brutal punishment. Prometheus was to be chained to a cliff for eternity. Each day, he would be visited by a vulture who would tear out his liver and each night his liver would grow back to be attacked again in the morning. Although Prometheus remained in perpetual agony, he never expressed regret at his act of rebellion. His resilience in the face of oppression made him a beloved figure in mythology. He was also celebrated for his mischievous and inquisitive spirit, and for the knowledge, progress, and power he brought to human hands.
He’s also a recurring figure in art and literature. In Percy Bysshe Shelley’s lyrical drama “Prometheus Unbound,” the author imagines Prometheus as a romantic hero who escapes and continues to spread empathy and knowledge. Of his protagonist, Shelley wrote, “Prometheus is the type of the highest perfection of moral and intellectual nature, impelled by the purest and the truest motives to the best and noblest ends.” His wife Mary envisaged Prometheus as a more cautionary figure and subtitled her novel “Frankenstein: The Modern Prometheus.” This suggests the damage of corrupting the natural order and remains relevant to the ethical questions surrounding science and technology today. As hero, rebel, or trickster, Prometheus remains a symbol of our capacity to capture the powers of nature, and ultimately, he reminds us of the potential of individual acts to ignite the world.
From the TED-Ed Lesson The myth of Prometheus - Iseult Gillespie
Animation by Léa Krawczyk ( @lea–krawczyk )
Researchers identify method of creating long-lasting memories
Imagine if playing a new video game or riding a rollercoaster could help you prepare for an exam or remember other critical information.
A new study in mice shows this link may be possible.
Attention-grabbing experiences trigger the release of memory-enhancing chemicals. Those chemicals can etch memories into the brain that occur just before or soon after the experience, regardless of whether they were related to the event, according to researchers at UT Southwestern Medical Center’s Peter O’Donnell Jr. Brain Institute.
The findings, published in Nature, hold intriguing implications for methods of learning in classrooms as well as an array of potential uses in the workplace and personal life, researchers said.
The trick to creating long-lasting memories is to find something interesting enough to activate the release of dopamine from the brain’s locus coeruleus (LC) region.
“Activation of the locus coeruleus increases our memory of events that happen at the time of activation and may also increase the recall of those memories at a later time,” said Dr. Robert Greene, the study’s co-senior author and a Professor of Psychiatry and Neurosciences with the O’Donnell Brain Institute.
The study explains at the molecular level why people tend to remember certain events in their lives with particular clarity as well as unrelated details surrounding those events: for instance, what they were doing in the hours before the Sept. 11, 2001, terrorist attacks; or where they were when John F. Kennedy was assassinated.
“The degree to which these memories are enhanced probably has to do with the degree of activation of the LC,” said Dr. Greene, holder of the Sherry Gold Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Mollie and Murray Gold, and the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. “When the New York World Trade Center came down on 9/11, that was high activation.”
But life-changing events aren’t the only way to trigger the release of dopamine in this part of the brain. It could be as simple as a student playing a new video game during a quick break while studying for a crucial exam, or a company executive playing tennis right after trying to memorize a big speech.
“In general, anything that will grab your attention in a persistent kind of way can lead to activation,” Dr. Greene said.
Scientists have known dopamine plays a large role in memory enhancement, though where the chemical originates and how it’s triggered have been points of study over the years.
Dr. Greene led a study published in 2012 that identified the locus coeruleus as a third key source for dopamine in the brain, besides the ventral tegmental area and the substantia nigra. That research demonstrated the drug amphetamine could pharmacologically trigger the brain’s release of dopamine from the LC.
The latest study builds upon those findings, establishing that dopamine in this area of the brain can be naturally activated through behavioral actions and that these actions enhance memory retention.
The new study suggests that drugs targeting neurons in the locus coeruleus may affect learning and memory as well. The LC is located in the brain stem and has a range of functions that affect a person’s emotions, anxiety levels, sleep patterns, memory and other aspects of behavior.
The study tested 120 mice to establish a link between locus coeruleus neurons and neuronal circuits of the hippocampus – the region of the brain responsible for recording memories – that receive dopamine from the LC.
One part of the research involved putting the mice in an arena to search for food hidden in sand that changed location each day. The study found that mice that were given a “novel experience” – exploring an unfamiliar floor surface 30 minutes after being trained to remember the food location – did better in remembering where to find the food the next day.
Researchers correlated this memory enhancement to a molecular process in the brain by injecting the mice with a genetically encoded light-sensitive activator called channelrhodopsin. This sensor allowed them to selectively activate dopamine-carrying neurons of the locus coeruleus that go to the hippocampus and to see first-hand which neurons were responsible for the memory enhancement.
They found that selectively activating the channelrhodopsin-labeled neurons with blue light (a technique called optogenetics) could substitute for the novelty experience as a memory enhancer in mice. They also found that this activation could cause a direct, long-lasting synaptic strengthening – an enhancement of memory-relevant communication occurring at the junctions between neurons in the hippocampus. This process can mediate improvement of learning and memory.
Some next steps include investigating how big an impact this finding can have on human learning, whether it can eventually lead to an understanding of how patients can develop failing memories, and how to better target effective therapies for these patients, said Dr. Greene.
For the past seven years or so, electric vehicles have been on the rise. Tesla is practically a household name, and it’s not uncommon to see EVs from companies like Nissan, Chevy, and BMW on the road now. That wouldn’t have happened without the lithium ion battery. Right now, lithium ion is the most popular battery type for electric vehicles. It can last up to 200 miles on a single charge, and it’s not too expensive to make, which means EVs are also relatively affordable.
But experts say that lithium ion batteries can only take electric cars so far—both on the road and in the marketplace. Before they can beat more popular combustion engine cars, electric vehicles will need a battery makeover, which is why countless engineers and scientists are searching for the next EV battery.
So what’s it going to look like? There are dozens of battery chemistries to play with. But how many of them can even approach the success of lithium ion? Electric vehicle advocate and blogger Chelsea Sexton joins George Crabtree, the director of the Joint Center for Energy Storage Research at Argonne National Laboratory, to discuss potential successors to the popular lithium ion battery.
Earlier this year, The Lutetium Project explored how microfluidic circuits are made, and now they are back with the conclusion of their microfluidic adventures. This video explores how microfluidic chips are used and how microscale fluid dynamics relates to other topics in the field. Because these techniques allow researchers very fine control over droplets, there are many chemical and biological possibilities for microfluidic experiments, some of which are shown in the video. Microfluidics in medicine are also already more common than you may think. For example, test strips used by diabetic patients to measure their blood glucose levels are microfluidic circuits! (Video and image credit: The Lutetium Project; submitted by Guillaume D.)
(Image caption: Brain showing hallmarks of Alzheimer’s disease (plaques in blue). Credit: ZEISS Microscopy)
New imaging technique measures toxicity of proteins associated with Alzheimer’s and Parkinson’s diseases
Researchers have developed a new imaging technique that makes it possible to study why proteins associated with Alzheimer’s and Parkinson’s diseases may go from harmless to toxic. The technique uses a technology called multi-dimensional super-resolution imaging that makes it possible to observe changes in the surfaces of individual protein molecules as they clump together. The tool may allow researchers to pinpoint how proteins misfold and eventually become toxic to nerve cells in the brain, which could aid in the development of treatments for these devastating diseases.
The researchers, from the University of Cambridge, have studied how a phenomenon called hydrophobicity (lack of affinity for water) in the proteins amyloid-beta and alpha synuclein – which are associated with Alzheimer’s and Parkinson’s respectively – changes as they stick together. It had been hypothesised that there was a link between the hydrophobicity and toxicity of these proteins, but this is the first time it has been possible to image hydrophobicity at such high resolution. Details are reported in the journal Nature Communications.
“These proteins start out in a relatively harmless form, but when they clump together, something important changes,” said Dr Steven Lee from Cambridge’s Department of Chemistry, the study’s senior author. “But using conventional imaging techniques, it hasn’t been possible to see what’s going on at the molecular level.”
In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, naturally-occurring proteins fold into the wrong shape and clump together into filament-like structures known as amyloid fibrils and smaller, highly toxic clusters known as oligomers which are thought to damage or kill neurons, however the exact mechanism remains unknown.
For the past two decades, researchers have been attempting to develop treatments which stop the proliferation of these clusters in the brain, but before any such treatment can be developed, there first needs to be a precise understanding of how oligomers form and why.
“There’s something special about oligomers, and we want to know what it is,” said Lee. “We’ve developed new tools that will help us answer these questions.”
When using conventional microscopy techniques, physics makes it impossible to zoom in past a certain point. Essentially, there is an innate blurriness to light, so anything below a certain size will appear as a blurry blob when viewed through an optical microscope, simply because light waves spread when they are focused on such a tiny spot. Amyloid fibrils and oligomers are smaller than this limit so it’s very difficult to directly visualise what is going on.
However, new super-resolution techniques, which are 10 to 20 times better than optical microscopes, have allowed researchers to get around these limitations and view biological and chemical processes at the nanoscale.
Lee and his colleagues have taken super-resolution techniques one step further, and are now able to not only determine the location of a molecule, but also the environmental properties of single molecules simultaneously.
Using their technique, known as sPAINT (spectrally-resolved points accumulation for imaging in nanoscale topography), the researchers used a dye molecule to map the hydrophobicity of amyloid fibrils and oligomers implicated in neurodegenerative diseases. The sPAINT technique is easy to implement, only requiring the addition of a single transmission diffraction gradient onto a super-resolution microscope. According to the researchers, the ability to map hydrophobicity at the nanoscale could be used to understand other biological processes in future.
Nardia - Central Park, New York City
Follow the Ballerina Project on Facebook, Instagram, YouTube, Twitter & Pinterest
For information on purchasing Ballerina Project limited edition prints.
Outfit by @blackmilkclothing Black Milk Clothing
Sainte-Geneviève Library. Paris, France.
The U.S. Women’s Team win gold at the 2014 Nanning World Championships