Laravel

Cream - Blog Posts

6 years ago

Discover NASA Technology in Your Life

Have you ever wondered how space exploration impacts you? “Spinoffs” are products and services developed from NASA technology or improved through NASA partnerships. These innovations—first created to help explore space and study Earth—are responsible for billions of dollars in both revenue and saved costs, tens of thousands of jobs created, and for changing the world around us.

Our NASA Home & City interactive web platform allows you to explore some of the spinoff technologies you can find in your everyday life, demonstrating the wider benefits of America’s investments in its space program.

image

Here are the seven most unexpected items you can find in your homes and cities which were “spun off” from technologies to enable the study and exploration of space.

1. Wireless Headsets

“That’s one small step for man, one giant leap for mankind.” On July 20, 1969, millions were glued to their television sets when NASA astronaut Neil Armstrong offered these famous words via live broadcast, upon becoming the first man to ever step foot on the Moon. This historic transmission was delivered from Armstrong’s headset to the headsets of Mission Control personnel at NASA, and then on to the world.

Improved by the technology that carried Neil Armstrong’s words, more compact and comfortable headsets were developed for airline pilots in the 1960s and '70s. Today those advancements continue to evolve in all forms of communications and telephone equipment. Mobile headsets provide greater efficiency and flexibility for everyone from professionals to video gamers.

image

2. Water Quality Monitoring

On the International Space Station very little goes to waste. This includes water, which is recovered from every possible source, cleaned and recycled.

Following our development of a simplified bacteria test for water quality on the space station, one engineer created a foundation to distribute test kits suitable for use in rural communities around the world. Water contamination is still a major problem in many places, and the test helps local communities and governments obtain and share water quality data using a smartphone app.

3. Skin Cream

We know that on Earth, gravity is a constant. For astronauts in orbit, however, it’s a different story—and according to a scientist at NASA's Johnson Space Center, studying what happens to bodies in microgravity “can lead to significant new discoveries in human biology for the benefit of humankind.”

As our researchers experimented with replicating microgravity conditions in the lab, they invented a bioreactor that could help simulate conditions that human cells experience in a space-like environment. This allowed them to perform tissue-growth experiments on the ground and in space, and eventually, to consider the question of how to protect human cells from the toxic effects of long-duration space missions.

Now, thanks to this NASA-patented bioreactor, one company uses agents from human cells that produce collagen to enrich its skin cream products. Lab tests have shown the rejuvenating cream to increase skin moisture content by 76 percent and reduce darkness and wrinkles by more than 50 percent.

image

4. Acoustic Guitars

From its start, NASA has innovated in all branches of aeronautics, which has led to numerous advances in helicopters, including ways to limit vibrations as they fly and advanced composites to build tougher, safer vehicles. 

An industrious helicopter manufacturer that built up its expertise with NASA contracts later used the same special vibration analysis equipment to enhance the sound of acoustic guitars. The company also built the body out of a fiberglass composite used for rotor blades. The resulting instruments are stronger and less expensive to produce than those of traditional rosewood and produce a rich, full sound.

image

5. Tiny [Mobile] Homes

While the International Space Station is the largest spacecraft ever flown—it's about the size of a football field—living and working space for astronauts is still at a premium. NASA created a studio called the Habitability Design Center to experiment with the interior design of spacecraft to maximize usable space and make scientific research as efficient and effective as possible.

An architect who helped NASA design the interior of the International Space Station launched a company specializing in compact trailers for camping and exploration. Suitable for a full hookup campsite or going completely off-grid, the company's flagship trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, and more. And it all fits into a unit light enough to be towed by a four-cylinder car.

image

6. Blue Light Blocking Ski Goggles

Skiers and snowboarders face extremely bright sunlight, especially when it's reflected off the white snow. That can make it hard to see, and not just because of glare. The blue in sunlight makes it more difficult to discern colors at the edge of the visible light spectrum, like reds. A NASA-designed filter used in snow goggles helps block up to 95 percent of blue light, making it easier for people on the slopes to see the terrain clearly.

image

7. Implants for the Hearing Impaired

Hearing aids, which make sound louder, can only do so much for those who were born or have become deaf. Cochlear implants work in a completely different way, converting sound into digital signals that can be processed by the brain.  And the technology traces back in part to a NASA space shuttle engineer who used skills in electronics instrumentation and his own experiences with hearing loss to develop an early version of the life-changing device.

image

These are just a few examples of thousands of NASA Spinoff and dual-purpose technologies benefiting the world around us. 

Trace space back to you and visit NASA Home and City today!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

From Frozen Antarctica to the Cold Vacuum of Space

A new experiment that will collect tiny charged particles known as galactic cosmic rays will soon be added to the International Space Station. The Cosmic Ray Energetics And Mass for the International Space Station payload, nicknamed ISS-CREAM, will soon be installed in its new home on the Station’s Japanese Experiment Module Exposed Facility. ISS-CREAM will help scientists understand more about galactic cosmic rays and the processes that produce them.

image

Wait, what are cosmic rays?

Cosmic rays are pieces of atoms that move through space at nearly the speed of light. Galactic cosmic rays come from beyond our solar system. 

image

They provide us with direct samples of matter from distant places in our galaxy.

Why do these things go so fast?

Galactic cosmic rays have been sped up by extreme processes. When massive stars die, they explode as supernovas. The explosion’s blast wave expands into space along with a cloud of debris. 

image

Particles caught up in this blast wave can bounce around in it and slowly pick up speed. Eventually they move so fast they can escape the blast wave and race away as a cosmic ray.

Where can we catch cosmic rays?

Cosmic rays are constantly zipping through space at these super-fast speeds, running into whatever is in their path -- including Earth.  

image

But Earth’s atmosphere is a great shield, protecting us from 99.9 percent of the radiation coming from space, including most cosmic rays.  This is good news for life on Earth, but bad news for scientists studying cosmic rays.  

So… how do you deal with that?

Because Earth has such an effective shield against cosmic rays, the best place for scientists to study them is above our atmosphere -- in space.  Since the 1920s, scientists have tried to get their instruments as close to space as possible. One of the simplest ways to do this is to send these instruments up on balloons the size of football stadiums. These balloons are so large because they have to be able to both lift their own weight and that of their cargo, which can be heavier than a car. Scientific balloons fly to 120,000 feet or more above the ground -- that’s at least three times higher than you might fly in a commercial airplane!  

image

Credit: Isaac Mognet (Pennsylvania State University)

Earlier versions of ISS-CREAM’s instruments were launched on these giant balloons from McMurdo Station in Antarctica seven times, starting in 2004, for a total of 191 days near the top of the atmosphere.  Each of these flights helped the team test their hardware and work towards sending a cutting-edge cosmic ray detector into space!  

How is going to space different than flying balloons?

Balloon flights allowed the team to collect a lot of cosmic rays, but even at 120,000 feet, a lot of the particles are still blocked. Scientists at the University of Maryland, College Park, who operate ISS-CREAM, expect to get about 10 times as much data from their new home on the International Space Station. 

image

That’s because it will be both above the atmosphere and fly far longer than is possible with a balloon. As you might imagine, there are large differences between flying something on a balloon and launching it into space. The science instruments and other systems had to be changed so ISS-CREAM could safely launch on a rocket and work in space.

What will ISS-CREAM do?

While on the space station, ISS-CREAM will collect millions of cosmic rays -- electrons, protons and atomic nuclei representing the elements found in the solar system. These results will help us understand why cosmic rays reach the wicked-fast speeds they do and, most important, what limits those speeds.

ISS-CREAM launches to the International Space Station aboard the latest SpaceX Dragon spacecraft, targeted to launch August 14. Want to learn more about ISS-CREAM and some of our scientific balloons? Check out our recent feature, NASA’s Scientific Balloon Program Reaches New Heights.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags