Laravel

Explore - Blog Posts

1 year ago
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit as seen from directly above the spacecraft looking down at Earth below. The solar sail has four black triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which connect the black parts. Credit: NASA

Setting Sail to Travel Through Space: 5 Things to Know about our New Mission

Our Advanced Composite Solar Sail System will launch aboard Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand no earlier than April 23, at 6 p.m. EDT. This mission will demonstrate the use of innovative materials and structures to deploy a next-generation solar sail from a CubeSat in low Earth orbit.

Here are five things to know about this upcoming mission:

1. Sailing on Sunshine

Solar sails use the pressure of sunlight for propulsion much like sailboats harness the wind, eliminating the need for rocket fuel after the spacecraft has launched. If all goes according to plan, this technology demonstration will help us test how the solar sail shape and design work in different orbits.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The spacecraft is seen rotating above Earth in orbit, with its reflective solar sail unfurled. The solar sail has four silver triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. Credit: NASA/Ben Schweighart

2. Small Package, Big Impact

The Advanced Composite Solar Sail System spacecraft is a CubeSat the size of a microwave, but when the package inside is fully unfurled, it will measure about 860 square feet (80 square meters) which is about the size of six parking spots. Once fully deployed, it will be the biggest, functional solar sail system – capable of controlled propulsion maneuvers – to be tested in space.

Setting Sail To Travel Through Space: 5 Things To Know About Our New Mission

3. Second NASA Solar Sail in Space

If successful, the Advanced Composite Solar Sail System will be  the second NASA solar sail to deploy in space, and not only will it be much larger, but this system will also test navigation capabilities to change the spacecraft’s orbit. This will help us gather data for future missions with even larger sails.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The view is a close-up of two different angles from the perspective of the spacecraft above Earth. We see gears onboard turning as part of the system that deploys the tubular booms unfurling the silver sail material. Credit: NASA/Ben Schweighart

4. BOOM: Stronger, Lighter Booms

Just like a sailboat mast supports its cloth sails, a solar sail has support beams called booms that provide structure. The Advanced Composite Solar Sail System mission’s primary objective is to deploy a new type of boom. These booms are made from flexible polymer and carbon fiber materials that are stiffer and 75% lighter than previous boom designs. They can also be flattened and rolled like a tape measure. Two booms spanning the diagonal of the square (23 feet or about 7 meters in length) could be rolled up and fit into the palm of your hand!

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. First, we see the full system sailing above Earth with its four silver triangular sail segments forming a diamond shape. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. The Sun is seen distantly in the background. The second view shows the solar sail system sailing away into deep space. Credit: NASA/Ben Schweighart

5. It’s a bird...it’s a plane...it’s our solar sail!

About one to two months after launch, the Advanced Composite Solar Sail System spacecraft will deploy its booms and unfurl its solar sail. Because of its large size and reflective material, the spacecraft may be visible from Earth with the naked eye if the lighting conditions and orientation are just right!

To learn more about this mission that will inform future space travel and expand our understanding of our Sun and solar system, visit https://www.nasa.gov/mission/acs3/.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
A lithograph of Girl Scout astronauts. Portraits of 33 women of various races and ethnicities curve around part of Earth (bottom left). On Earth are embossed words “doctors, educators, engineers, pilots, scientists.” At top left is the Moon, and at top right is the International Space Station. From left to right, bottom to top, the astronauts are Serena M. Auñón-Chancellor, Kayla Barron, Yvonne D. Cagle, Laurel B. Clark, Eileen M. Collins, Nancy J. Currie-Gregg, N. Jan Davis, Anna L. Fisher, Susan J. Helms, Joan E. Higginbotham, Kathryn P. Hire, Tamara E. Jernigan, Susan L. Kilrain, Christina H. Koch, Wendy B. Lawrence, Sandra H. Magnus, Nicole Aunapu Mann, Megan McArthur, Jessica U. Meir, Pamela A. Melroy, Dorothy M. Metcalf-Lindenburger, Barbara R. Morgan, Lisa M. Nowak, Loral O’Hara, Kathleen Rubins, M. Rhea Seddon, Heidemarie M. Stefanyshyn-Piper, Kathryn D. Sullivan, Kathryn C. Thornton, Janice E. Voss, Jessica Watkins, Mary Ellen Weber, and Sunita L. Williams.

It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.

Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.

Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.

Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.

Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Astrobiology: The Story of our Search for Life in the Universe

Astrobiologists study the origin, evolution, and distribution of life in the universe. This includes identifying evidence left behind by life that once survived on the ancient Earth, and extends to the search for life beyond our planet.

When looking for signs of life on other worlds, what are they looking for?

Things called biosignatures. For example, when you sign a piece of paper, your signature is evidence of your existence. Similarly, biosignatures are anything that can prove that life was once, or is, present in an environment.

Astrobiology: The Story Of Our Search For Life In The Universe

If we were very very lucky, we might spot something we know is life with a powerful telescope or receive a "phone call" or radio signal from alien civilizations. Those types of biosignatures would be obvious. But they would only let us identify advanced life.

Astrobiology: The Story Of Our Search For Life In The Universe

For most of Earth’s history (billions of years), single-celled life like bacteria and archaea have been around. Humans have only been making radio transmissions for hundreds of years. So we have a better chance of finding life if we look for signs that have been around for very long periods of time.

Astrobiology: The Story Of Our Search For Life In The Universe

Patterns in ancient rocks that were created by life are a great example. That can be anything like a dinosaur footprint or structures built by microorganisms, like stromatolites.

Astrobiology: The Story Of Our Search For Life In The Universe

Molecules can also be biosignatures, like DNA left behind for detectives to discover. But DNA doesn’t last very long on its own in most environments, so other molecules like lipids (like natural oils, wax, and fat) might be a better choice if you are looking for signatures of life from millions (or billions) of years ago.

Even the balance of gases in a planet’s atmosphere can be a sign of past or present life. On Earth, biology plays a major role in maintaining the delicate composition of gases like nitrogen, oxygen, and carbon dioxide in the air that we breathe.

These are just a few examples of signs astrobiologists look for when searching for life amongst the stars! Research into these biosignatures inform many of our biggest missions, from observatories like the Hubble Space Telescope and the Webb Space Telescope to our Mars Sample Return endeavor.

Want to learn more about the search for life? Check out the latest issue of our comic-book style graphic history novel, Astrobiology: The Story of our Search for Life in the Universe. This new chapter is all about biosignatures.

Explore life in the universe with us by following NASA Astrobiology on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
Ever Wanted To Look Back In Time? This Week, We’re Launching A Kind Of Time Machine – A Telescope

Ever wanted to look back in time? This week, we’re launching a kind of time machine – a telescope so powerful it will help us see back some of the first stars and galaxies made after the Big Bang.

The James Webb Space Telescope is the largest and most advanced telescope we’ve ever put in space. With revolutionary technology, it will study 13.5 billion years of cosmic history and help humanity understand our place in the stars.

Tomorrow, Dec. 25, at 7:20 a.m. ET (12:20 UTC), the Webb Telescope is set to launch from French Guiana, beginning a 29-day journey to a spot a million miles away.

How to Watch:

In English:

Dec. 25

Live coverage starts at 6:00 a.m. ET/11:00 UTC

Facebook, YouTube, Twitter, Twitch

In Spanish:

Dec. 25

Live coverage starts at 6:30 a.m. ET/11:30 UTC

Facebook, YouTube, Twitter

Once Webb launches, the journey has only just begun. The telescope will begin a 2-week-long process of unfolding itself in space before settling in to explore the universe in ways we’ve never seen before.

Follow along on Twitter, Facebook and Instagram and with #UnfoldTheUniverse.


Tags
3 years ago

Our Parker Solar Probe Just Touched the Sun!

Our Parker Solar Probe Just Touched The Sun!

For the first time in history, a spacecraft has touched the Sun. Our Parker Solar Probe flew right through the Sun’s atmosphere, the corona. (That’s the part of the Sun that we can see during a total solar eclipse.)

Our Parker Solar Probe Just Touched The Sun!

This marks one great step for Parker Solar Probe and one giant leap for solar science! Landing on the Moon helped scientists better understand how it was formed. Now, touching the Sun will help scientists understand our star and how it influences worlds across the solar system.

Our Parker Solar Probe Just Touched The Sun!

Unlike Earth, the Sun doesn’t have a solid surface (it’s a giant ball of seething, boiling gases). But the Sun does have a superheated atmosphere. Heat and pressure push solar material away from the Sun. Eventually, some of that material escapes the pull of the Sun’s gravity and magnetism and becomes the solar wind, which gusts through the entire solar system.

But where exactly does the Sun’s atmosphere end and the solar wind begin? We’ve never known for sure. Until now!

Our Parker Solar Probe Just Touched The Sun!

In April 2021, Parker Solar Probe swooped near the Sun. It passed through a massive plume of solar material in the corona. This was like flying into the eye of a hurricane. That flow of solar stuff — usually a powerful stream of particles — hit the brakes and went into slow-motion.

For the first time, Parker Solar Probe found itself in a place where the Sun’s magnetism and gravity were strong enough to stop solar material from escaping. That told scientists Parker Solar Probe had passed the boundary: On one side, space filled with solar wind, on the other, the Sun’s atmosphere.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe’s proximity to the Sun has led to another big discovery: the origin of switchbacks, zig-zag-shaped magnetic kinks in the solar wind.

These bizarre shapes were first observed in the 1990s. Then, in 2019, Parker Solar Probe revealed they were much more common than scientists first realized. But they still had questions, like where the switchbacks come from and how the Sun makes them.

Our Parker Solar Probe Just Touched The Sun!

Recently, Parker Solar Probe dug up two important clues. First, switchbacks tend to have lots of helium, which scientists know comes from the solar surface. And they come in patches.

Those patches lined up just right with magnetic funnels that appear on the Sun’s surface. Matching these clues up like puzzle pieces, scientists realized switchbacks must come from near the surface of the Sun.

Figuring out where switchbacks come from and how they form will help scientists understand how the Sun produces the solar wind. And that could clue us into one of the Sun’s biggest mysteries: why the Sun’s atmosphere is much, much hotter than the surface below.

Our Parker Solar Probe Just Touched The Sun!

Parker Solar Probe will fly closer and closer to the Sun. Who knows what else we’ll discover?

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

That’s a wrap! Thank you for all the wonderful questions. James Webb Space Telescope Planetary Scientist Dr. Naomi Rowe-Gurney answered questions about the science goals, capabilities, and her hopes for the world's most powerful telescope.

Check out her full Answer Time for more: Career | Science Goals | Capabilities

We hope you enjoyed today and learned something new about the Webb mission! Don’t miss the historic launch of this first-of-its kind space observatory. Tune in to NASA TV HERE on Dec. 22 starting at 7:20 a.m. EST (12:20 UTC).

If today’s Answer Time got you excited, explore all the ways you can engage with the mission before launch! Join our #UnfoldTheUniverse art challenge, our virtual social event with international space agencies, and countdown to liftoff with us. Check out all the ways to participate HERE.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Questions coming up from….

@teamadamsperret: Congrats on your PhD!! When people ask what you do, what's your reply?

@Anonymous: How does it feel, working in NASA?

@moonlighy: How did you find your love for this job?

@redbullanddepression: what the prettiest star in the sky in your opinion? also, you are a great role model as a queer woman who is attending university next year to major in aerospace engineering!!!


Tags
3 years ago

Hi.dr.naomi.i have 2 questions.

1.Can this JAMES WEB T.S able to see Mercury, Venus and certain stars that are close to the sun either. I.

2.Why is the James Webb t.s.mirror yellow?

Any specific reason for this


Tags
3 years ago

Will it take pictures of Pluto?


Tags
3 years ago

When will we start seeing images from the James Webb telescope??


Tags
3 years ago

What would be the ideal discovery to make with the Webb Telescope? Or what would you love to find with it?


Tags
3 years ago

Hello. I'm curious what new feature the james webb brings to the table, like its ability to detect in infrared, that you are most excited about? What are you most interested to look into with this new telescope?


Tags
3 years ago

How exactly will it work? And whats the goal of the project?


Tags
3 years ago

Do you have any protections against asteroids?


Tags
3 years ago

Concerning the new telescope -out of curiosity- what is the maximum distance it can view planets, galaxies, objects, anything up to -in terms of common/metric measurement, and/or years (if applicable) etc.? -Rose


Tags
3 years ago

What does “chemical fingerprints” mean? What chemicals indicate possible life on other planets?


Tags
3 years ago

Will the James Webb Telescope also be able to spot out signs of life on habitable worlds?


Tags
3 years ago

Questions coming up from….

@maybeinanotherworld: JWST IS HAPPENING! How are all of you feeling about this?

@Anonymous: How powerful is this telescope, exactly?

@Anonymous: Why are the mirrors on it yellow?

@foeofcolor: How long is this estimated to last for? Like how long will it be able to function in space by estimates?


Tags
3 years ago

Who's ready to #UnfoldTheUniverse? The James Webb Space Telescope Answer Time with expert Dr. Naomi Rowe-Gurney is LIVE! Stay tuned for talks about the science goals, capabilities, and hopes for the world's most powerful telescope. View ALL the answers HERE.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

How will the James Webb Space Telescope change how we see the universe? Ask an expert!

The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!

🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.

Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.

How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

The James Webb Space Telescope – fun facts:

Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.

Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.

With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.

It will study galaxies near and far, young and old, to understand how they evolve.

Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
The Roasted Planet

The Roasted Planet

Can you hear this exoplanet screaming? As the exoplanet known as HD 80606 b approaches its star from an extreme, elliptical orbit, it suffers star-grazing torture that causes howling, supersonic winds and shockwave storms across this world beyond our solar system. Its torturous journey boils its atmosphere to a hellish 2,000 degrees Fahrenheit every 111 days, roasting both its light and dark sides. HD 80606b will never escape this scorching nightmare. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Our Galaxy is Caught Up in a Giant Cosmic Cobweb! 🕸️

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

If we could zoom waaaay out, we would see that galaxies and galaxy clusters make up large, fuzzy threads, like the strands of a giant cobweb. But we'll work our way out to that. First let's start at home and look at our planet's different cosmic communities.

Our home star system

Earth is one of eight planets — Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune — that orbit the Sun. But our solar system is more than just planets; it also has a lot of smaller objects.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

An asteroid belt circles the Sun between Mars and Jupiter. Beyond Neptune is a doughnut-shaped region of icy objects called the Kuiper Belt. This is where dwarf planets like Pluto and Makemake are found and is likely the source of short-period comets (like Haley’s comet), which orbit the Sun in less than 200 years.

Scientists think that even farther out lies the Oort Cloud, also a likely source of comets. This most distant region of our solar system is a giant spherical shell storing additional icy space debris the size of mountains, or larger! The outer edge of the Oort Cloud extends to about 1.5 light-years from the Sun — that’s the distance light travels in a year and a half (over 9 trillion miles).

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

Sometimes asteroids or comets get ejected from these regions and end up sharing an orbit with planets like Jupiter or even crossing Earth’s orbit. There are even interstellar objects that have entered the inner solar system from even farther than the Oort Cloud, perhaps coming all the way from another star!

Our home galaxy

Let's zoom out to look at the whole Milky Way galaxy, which contains more than 100 billion stars. Many are found in the galaxy’s disk — the pancake-shaped part of a spiral galaxy where the spiral arms lie. The brightest and most massive stars are found in the spiral arms, close to their birth places. Dimmer, less massive stars can be found sprinkled throughout the disk. Also found throughout the spiral arms are dense clouds of gas and dust called nebulae. The Sun lies in a small spiral arm called the Orion Spur.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

The Milky Way’s disk is embedded in a spherical “halo” about 120,000 light-years across. The halo is dotted with globular clusters of old stars and filled with dark matter. Dark matter doesn’t emit enough light for us to directly detect it, but we know it’s there because without its mass our galaxy doesn’t have enough gravity to hold together!

Our galaxy also has several orbiting companion galaxies ranging from about 25,000 to 1.4 million light-years away. The best known of these are the Large and Small Magellanic Clouds, which are visible to the unaided eye from Earth’s Southern Hemisphere.

Our galactic neighborhood

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

The Milky Way and Andromeda, our nearest neighboring spiral galaxy, are just two members of a small group of galaxies called the Local Group. They and the other members of the group, 50 to 80 smaller galaxies, spread across about 10 million light-years.

The Local Group lies at the outskirts of an even larger structure. It is just one of at least 100 groups and clusters of galaxies that make up the Virgo Supercluster. This cluster of clusters spans about 110 million light-years!

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

Galaxies aren’t the only thing found in a galaxy cluster, though. We also find hot gas, as shown above in the bright X-ray light (in pink) that surrounds the galaxies (in optical light) of cluster Abell 1413, which is a picturesque member of a different supercluster. Plus, there is dark matter throughout the cluster that is only detectable through its gravitational interactions with other objects.

The Cosmic Web

The Virgo Supercluster is just one of many, many other groups of galaxies. But the universe’s structure is more than just galaxies, clusters, and the stuff contained within them.

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

For more than two decades, astronomers have been mapping out the locations of galaxies, revealing a filamentary, web-like structure. This large-scale backbone of the cosmos consists of dark matter laced with gas. Galaxies and clusters form along this structure, and there are large voids in between.

The scientific visualizations of this “cosmic web” look a little like a spider web, but that would be one colossal spider! <shudder>

Our Galaxy Is Caught Up In A Giant Cosmic Cobweb! 🕸️

And there you have the different communities that define Earth’s place in the universe. Our tiny planet is a small speck on a crumb of that giant cosmic web!

Want to learn even more about the structures in the universe? Check out our Cosmic Distance Scale!

Make sure to follow us on Tumblr for your regular dose of space.


Tags
3 years ago
Who Is The First Woman? Meet Our New Graphic Novel Hero!

Who is the First Woman? Meet our new graphic novel hero!

Artemis is the first step in the next era of human exploration. This time when we go to the Moon, we're staying, to study and learn more than ever before. We’ll test new technologies and prepare for our next giant leap – sending astronauts to Mars.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Artemis missions will achieve many historic feats, like landing the first woman and first person of color on the Moon.

With today’s release of our graphic novel First Woman: NASA’s Promise for Humanity you don’t have to wait to join us on an inspiring adventure in space.

Meet Commander Callie Rodriguez, the first woman to explore the Moon – at least in the comic book universe.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

In Issue No. 1: Dream to Reality, Callie, her robot sidekick RT, and a team of other astronauts are living and working on the Moon in the not-too-distant future. Like any good, inquisitive robot, RT asks Callie how he came to be – not just on the Moon after a harrowing experience stowed in the Orion capsule – but about their origin story, if you will.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

From her childhood aspirations of space travel to being selected as an astronaut candidate, Callie takes us on her trailblazing journey to the Moon.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

As they venture out to check on a problem at a lunar crater, Callie shares with RT and the crew that she was captivated by space as a kid, and how time in her father’s autobody shop piqued her interest in building things and going places.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Callie learned at a young age that knowledge is gained through both success and failure in the classroom and on the field.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

Through disappointment, setbacks, and personal tragedy, Callie pursues her passions and eventually achieves her lifelong dream of becoming an astronaut – a road inspired by the real lives of many NASA astronauts living and working in space today.

Who Is The First Woman? Meet Our New Graphic Novel Hero!

So what's up with that lunar crater?

Did Callie pass her math class?

And where did RT come from?

Be a part of the adventure: read (or listen to) the full First Woman story and immerse yourself in a digital experience through our first-ever extended reality-enabled graphic novel.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

What Would These Astronauts Put in Their #NASAMoonKit?

image

NASA is hard at work to land the first woman and the next man on the Moon, and we want to know: what would you pack for a trip to the Moon?   

We will be soon conducting our last in a series of Green Run tests for the core stage of our Space Launch System (SLS) — the most powerful rocket ever built.

The series of tests is designed to gradually bring the rocket stage and all its systems to life for the first time — ensuring that it’s ready for missions to the Moon through the Artemis program.  

To mark this critical time in the history of American spaceflight, we’ve been asking people like you — what would you take with you on a trip to the Moon? Social media users have been regaling us with their images, videos, and illustrations with the hashtag #NASAMoonKit!

Looking for a little inspiration? We asked some of our astronauts and NASA leaders the same question:

1. NASA Astronaut Chris Cassidy

image

NASA astronaut Chris Cassidy recently took this photo from the International Space Station and posted it to his Twitter account with this caption:

“If I was on the next mission to the Moon, I would have to bring this tiny spaceman with me! He’s flown with me on all of my missions and was in my uniform pocket for all the SEAL missions I have been a part of. Kind of like a good luck charm.”

2. European Space Agency Astronaut Tim Peake

image

European Space Agency astronaut Tim Peake asked his two sons what they would take with them to the Moon. This is what they decided on!

3. NASA Astronaut Scott Tingle

Based on previous missions to space, NASA astronaut Scott Tingle would put a can of LiOH, or Lithium Hydroxide, into his #NASAMoonKit. 

A LiOH can pulls carbon dioxide out of the air — very important when you're in a closed environment for a long time! Apollo 13 enthusiasts will remember that the astronauts had to turn off their environmental system to preserve power. To keep the air safe, they used LiOH cans from another part of the vehicle, but the cans were round and the fitting was square. Today we have interoperability standards for space systems, so no more square pegs in round holes!

4. NASA Astronaut Drew Morgan

image

NASA astronaut Drew Morgan received some feedback from his youngest daughter when she was in kindergarten about she would put into her #NASAMoonKit.

5. Head of Human Spaceflight Kathy Lueders

image

Although Kathy Lueders is not an astronaut, she is the head of human spaceflight at NASA! Her #NASAMoonKit includes activities to keep her entertained as well as her favorite pillow.

6. NASA Astronaut Kenneth Bowersox

What Would These Astronauts Put In Their #NASAMoonKit?

NASA astronaut Kenneth Bowersox knows from his past space shuttle experience what the “perfect space food” is — peanut butter. He would also put a hooded sweatshirt in his #NASAMoonKit, for those long, cold nights on the way to the Moon.

7. NASA Astronaut Michael Collins

image

NASA astronaut Michael Collins has actually made a real-life #NASAMoonKit — when he flew to the Moon on the Apollo 11 mission! But for this time around, he tweeted that would like to bring coffee like he did the first time — but add on a good book.  

How to Show Us What’s In Your #NASAMoonKit:

There are four social media platforms that you can use to submit your work:

Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit  

Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet  

Facebook: Share your image on Facebook and include #NASAMoonKit in the post  

Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags

If your #NASAMoonKit catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast!

Click here for #NASAMoonKit Terms and Conditions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Oddly Satisfying #NASAMoonKits 🌙

What would you take with you to the Moon? 🧳

image

We’re getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for our Artemis I mission. This test will ensure the Space Launch System rocket is ready for the first and future missions beyond Earth’s orbit, putting us one step closer to landing the first woman and the next man on the Moon!

In celebration of this important milestone, we’ve been asking everyone (yeah, you there!) to dust off your suitcase, get creative, and show us what you would take if you were heading to the Moon!

Take a moment to peruse these #oddlysatisfying #NASAMoonKits submitted by people like you, and let them inspire you to lay out your own masterpiece. Post a picture of what you’d pack for the moon using the hashtag #NASAMoonKit for a chance to be shared by us! ⁣

1. @alexandra4astronaut

image

A stunning #NASAMoonKit in blue. 💙

2.@timmerman.jess

image

Looks like a little friend is hoping to catch a ride with this #NASAMoonKit. 🐶

3. @guido_aerus_lombardo

image

A #NASAMoonKit fit for an explorer. 🧭

4. @melli.jp

image

Shout out to the monochrome #NASAMoonKit enthusiasts! 🖤

5. @mycactusdress

image

This #NASAMoonKit is thoughtfully laid out by a true fan. 📚

6. Mar Christian V. Cruz

image

This geologist’s #NASAMoonKit rocks. ⛏️

7. Nelli

image

Beauty in simple #NASAMoonKits. ✨

8. @urbanxkoi

image

This #NASAMoonKit successfully fits into our Expert Mode — a volume of 5” by 8” by 2” (12.7 cm x 20.32 cm x 5.08 cm). The Expert Mode dimensions are based on the amount of space astronauts are allowed when they travel to the International Space Station!

9. PWR Aerospace

image

Nothing like a cozy #NASAMoonKit. 🧦

10. LEGO

image

This #NASAMoonKit is clearly for the builder-types! 🧸

How to Show Us What’s In Your #NASAMoonKit:    

There are four social media platforms that you can use to submit your work:

Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit  

Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet  

Facebook: Share your image on Facebook and include #NASAMoonKit in the post  

Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags

If a #NASAMoonKit post catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast! 

Click here for #NASAMoonKit Terms and Conditions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

What Would NASA Imagery Experts Pack for the Moon?

image

We are one step closer to landing the first woman and the next man on the Moon, and we want to know: What would you take with you to the Moon? 🌙

We are getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for the Artemis I mission. This test will ensure the Space Launch System — the most powerful rocket ever built — is ready for the first and future missions beyond Earth’s orbit to the Moon.  

In celebration of this important milestone, we’ve been asking you — yes, you! — to tell us what you would pack for the Moon with the hashtag #NASAMoonKit!

To provide a little inspiration, here are some examples of what NASA imagery experts would put in their Moon kits:

image

“The first thing that went into my #NASAMoonKit was my camera. Some of the most iconic photographs ever taken were captured on the surface of the Moon by NASA astronauts. The camera has to go. The hat and sunscreen will be a must to protect me from the unfiltered sunlight. Warm socks? Of course, my feet are always cold. A little “Moon Music” and a photo of Holly, the best dog in the world, will pass the time during breaks.  Lastly, I need to eat. Water and gummy peach rings will go in a small corner of my pack.”

— Marv Smith, Lead Photographer, NASA Glenn Research Center 

image

“I may not always pack light, but I tried to only pack the essentials — with a couple of goodies. I get cold fairly easily hence the blanket, extra NASA shirt, hat and gloves. No trip is complete without my favorite snack of almonds, water, sunglasses, lip balm, phone, and my headphones to listen to some music. I figured I could bring my yoga mat, because who wouldn’t want to do yoga on the Moon? The most important part of this kit is my camera! I brought a couple of different lenses for a variety of options, along with a sports action camera, notebook and computer for editing. The Van Gogh doll was just for fun!”

— Jordan Salkin, Scientific Imaging, NASA Glenn Research Center

image

“The first thing I thought of for my #NASAMoonKit was the first book I ever read when I was learning to read. It is about going on a journey to the Moon. I really liked that book and read it many times, looking at the illustrations and wondering about if I would ever actually go to the Moon. Of the many belongings that I have lost through the years from moving, that book has stayed with me and so it would, of course, go to the Moon with me. A family photo was second to get packed since we always had photos taken and volumes of old family photos in the house. Photography has played an important role in my life so my camera gear is third to get packed. As a kid I spent a lot of time and money building rockets and flying them. I bet my rocket would go very high on the Moon. I also like a little candy wherever I go.”  

— Quentin Schwinn, Scientific Imaging, NASA Glenn Research Center

image

“I couldn’t go to the moon without my two mirrorless digital SLR cameras, lenses, my 120 6x4.5 film camera, several rolls of 120 film, my singing bowl (for meditation), my wireless printer, my son’s astronaut toy, several pictures of both my sons and wife, my oldest son’s first shoes (they are good luck), cell phone (for music and extra photos), tablet and pen (for editing and books), my laptop, and my water bottle (I take it everywhere).”

— Jef Janis, Photographer, NASA Glenn Research Center  

image

“I’m taking my NASA coffee mug because let’s be honest; nothing is getting done on the moon until I’ve had my morning coffee out of my favorite mug. I’m taking two cameras: the 360-degree camera and the vintage range finder camera my father bought during the Korean War when he was a Captain and Base Doctor in the Air Force. I’m also taking my awesome camera socks so I can be a fashion embarrassment to my family in space as well as on Earth. The lucky rabbit is named Dez — for years I have carried her all over the world in my pocket whenever I needed a little good luck on a photo shoot. She’s come along to photograph hurricanes, presidents, and sports championships. Being from New Orleans, I would love to be the first to carry out a Mardi Gras tradition on the moon, flinging doubloons and beads to my fellow astronauts (especially if we are up there during Carnival season). I also want to take a picture of this picture on the moon so my wife and son know they are with me no matter where I go. Lastly, it’s a well-known fact that space travelers should always bring a towel on their journey.”

— Michael DeMocker, photographer, videographer & UAS, Michoud Assembly Facility

image

“I couldn’t go to the Moon without my camera, a 45-rpm vinyl record (My husband’s band — I really want to know how a record sounds in space. Gravity is what makes the needle lay on the record so will the change in gravity make it sound different?), a book to read, a photograph of my daughter, my phone or rather my communication and photo editing device, a snack, and I definitely couldn’t go to the Moon without my moon boots!”

— Bridget Caswell, Photographer, NASA Glenn Research Center  


Tags
4 years ago

10 Ways the Webb Telescope ‘Trains’ for Space

The James Webb Space Telescope will peer at the first stars and galaxies as a cosmic time machine, look beyond to distant worlds, and unlock the mysteries of the universe. But before it can do any of those things, it needs to “train” for traveling to its destination — 1 million miles away from Earth!

So how does Webb get ready for space while it’s still on the ground? Practice makes perfect. Different components of the telescope were first tested on their own, but now a fully-assembled Webb is putting all of its training together. Here are 10 types of tests that Webb went through to prepare for its epic journey:

1. Sounding Off

A rocket launch is 100 times more intense and four times louder than a rock concert! (That’s according to Paul Geithner, Webb’s deputy project manager – technical.) To simulate that level of extreme noise, Webb’s full structure was blasted with powerful sound waves during its observatory-level acoustic testing in August.

image

2. Shaking It Up

Webb will also have to withstand a super-bumpy ride as it launches — like a plane takeoff, but with a lot more shaking! The observatory was carefully folded into its launch position, placed onto a shaker table, and vibrated from 5 to 100 times per second to match the speeds of Webb’s launch vehicle, an Ariane 5 rocket.

image

3. All Systems Go

In July, Webb performed a rigorous test of its software and electrical systems as a fully connected telescope. Each line of code for Webb was tested and then retested as different lines were combined into Webb’s larger software components. To complete this test, Webb team members were staffed 24 hours a day for 15 consecutive days!

image

4. Hanging Out

After launch, Webb is designed to unfold (like origami in reverse) from its folded launch position into its operational form. Without recharging, the telescope’s onboard battery would only last a few hours, so it will be up to Webb’s 20-foot solar array to harness the Sun’s energy for all of the telescope’s electrical needs. To mimic the zero-gravity conditions of space, Webb technicians tested the solar array by hanging it sideways.

image

5. Time to Stretch

The tower connects the upper and lower halves of Webb. Once Webb is in space, the tower will extend 48 inches (1.2 meters) upward to create a gap between the two halves of the telescope. Then all five layers of Webb’s sunshield will slowly unfurl and stretch out, forming what will look like a giant kite in space. Both the tower and sunshield will help different sections of Webb maintain their ideal temperatures.

image

For these steps, engineers designed an ingenious system of cables, pulleys and weights to counter the effects of Earth’s gravity. 6. Dance of the Mirrors

Unfolding Webb’s mirrors will involve some dance-like choreography. First, a support structure will gracefully unfold to place the circular secondary mirror out in front of the primary mirror. Although small, the secondary mirror will play a big role: focusing light from the primary mirror to send to Webb’s scientific instruments.

image

Next, Webb’s iconic primary mirror will fully extend so that all 18 hexagonal segments are in view. At 6.5 meters (21 feet 4-inches) across, the mirror’s massive size is key for seeing in sharp detail. Like in tower and sunshield testing, the Webb team offloaded the weight of both mirrors with cables, pulleys and weights so that they unfolded as if weightless in space.

image

7. Do Not Disturb

Before a plane takeoff, it’s important for us to turn off our cell phones to make sure that their electromagnetic waves won’t interfere with navigation signals. Similarly, Webb had to test that its scientific instruments wouldn’t disrupt the electromagnetic environment of the spacecraft. This way, when we get images back from Webb, we’ll know that we’re seeing actual objects in space instead of possible blips caused by electromagnetic interference. These tests took place in the Electromagnetic Interference (EMI) Lab, which looks like a futuristic sound booth! Instead of absorbing sound, however, the walls of this chamber help keep electromagnetic waves from bouncing around.

image

8. Phoning Earth

How will Webb know where to go and what to look at? Thanks to Webb’s Ground Segment Tests, we know that we’ll be able to “talk” to Webb after liftoff. In the first six hours after launch, the telescope needs to seamlessly switch between different communication networks and stations located around the world. Flight controllers ran through these complex procedures in fall 2018 to help ensure that launch will be a smooth success.

image

After Webb reaches its destination, operators will use the Deep Space Network, an international array of giant radio antennas, to relay commands that tell Webb where to look. To test this process when Webb isn’t in space yet, the team used special equipment to imitate the real radio link that will exist between the observatory and the network.

9. Hot and Cold

Between 2017 and 2019, Webb engineers separately tested the two halves of the telescope in different thermal vacuum chambers, which are huge, climate-controlled rooms drained of air to match the vacuum of space. In testing, the spacecraft bus and sunshield half were exposed to both boiling hot and freezing cold temperatures, like the conditions that they’ll encounter during Webb’s journey.

But Webb’s mirrors and instruments will need to be colder than cold to operate! This other half of Webb was tested in the historic Chamber A, which was used to test Apollo Moon mission hardware and specifically upgraded to fit Webb. Over about 100 days, Chamber A was gradually cooled down, held at cryogenic temperatures (about minus 387 F, or minus 232.8 C), and then warmed back up to room temperature.

image

10. Cosmic Vision

When the Hubble Space Telescope was first sent into space, its images were blurry due to a flaw with its mirror. This error taught us about the importance of comprehensively checking Webb’s “eyes” before the telescope gets out of reach.

Besides training for space survival, Webb also spent time in Chamber A undergoing mirror alignment and optical testing. The team used a piece of test hardware that acted as a source of artificial starlight to verify that light would travel correctly through Webb’s optical system.

image

Whew! That’s a lot of testing under Webb’s belt! Webb is set to launch in October 2021 from Kourou, French Guiana. But until then, it’s still got plenty of training left, including a final round of deployment tests before being shipped to its launch location.

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Are You Up to the Task of Navigating Space with NASA?

image

We’re committed to exploration and discovery, journeying to the Moon, Mars, and beyond. But how do we guide our missions on their voyage among the stars? Navigation engineers lead the way!

Using complex mathematical formulas, navigation experts calculate where our spacecraft are and where they’re headed. No matter the destination, navigating the stars is a complicated challenge that faces all our missions. But, we think you’re up to the task!

Our space navigation workbook lets you explore the techniques and mathematical concepts used by navigation engineers. The book delves into groundbreaking navigation innovations like miniaturized atomic clocks, autonomous navigation technologies, using GPS signals at the Moon, and guiding missions through the solar system with X-ray emissions from pulsars — a type of neutron star. It also introduces you to experts working with NASA’s Space Communications and Navigation program at Goddard Space Flight Center in Greenbelt, Maryland.

If you’re a high schooler who dreams of guiding a rover across the rocky surface of Mars or planning the trajectory of an observer swinging around Venus en route to the Sun, this workbook is for you! Download it today and start your adventure with NASA: https://go.nasa.gov/3i7Pzqr


Tags
4 years ago

7 Things to Know about the Perseverance Mars Rover

image

We’re set to launch the Mars 2020 Perseverance rover mission from Cape Canaveral, Florida, on July 30. The rover is loaded with scientific instruments and advanced technology, making it the largest, heaviest and most sophisticated vehicle ever sent to the Red Planet.

What is Perseverance’s mission and what will it do on Mars? Here are seven things to know:

1. Perseverance draws on the NASA – and scientific – spirit of overcoming challenges

image

Not only does it have to launch during a pandemic and land on a treacherous planet, it has to carry out its science goals:

Searching for signs of past microbial life

Mapping out the planet’s geology and climate

Collecting rock and other samples for future return to Earth

Paving the way for human exploration

We chose the name Perseverance from among the 28,000 essays submitted during the "Name the Rover" contest. Because of the coronavirus pandemic, the months leading up to the launch in particular have required creative problem solving, teamwork and determination.

2. Perseverance builds on the lessons from other Mars rovers

image

In 1997, our first Mars rover – Sojourner – showed that a robot could rove on the Red Planet. Spirit and Opportunity, which both landed in 2004, found evidence that Mars once had water before becoming a frozen desert.

Curiosity found evidence that Mars’ Gale Crater was home to a lake billions of years ago and that there was an environment that may have sustained microbial life. Perseverance aims to answer the age-old question – are there any signs that life once existed on Mars?

3. Perseverance will land in a place with high potential to find signs of ancient life

image

The rover will land in Jezero Crater, a 28-mile wide basin north of the Martian equator. A space rock hit the surface long ago, creating the large hole. Between 3 and 4 billion years ago, a river flowed into a body of water in Jezero the size of Lake Tahoe.

4. Perseverance will also collect important data about Mars’ geology and climate

image

Mars orbiters have collected images and other data about Jezero Crater from about 200 miles above, but finding signs of past life will need much closer inspection. A rover like Perseverance can look for those signs that may be related to ancient life and analyze the context in which they were found to see if the origins were biological.

5. Perseverance is the first leg of a round trip to Mars

image

This is the first rover to bring a sample-gathering system to Mars that will package promising samples of rocks and other materials for future return to Earth. NASA and ESA are working on the Mars Sample Return campaign, so we can analyze the rocks and sediment with tools too large and complex to send to space.

6. Perseverance will pave the way for human exploration of the Red Planet

image

Two packages -- one that helps the rover autonomously avoid hazards during landing (TRN) and another that gathers crucial data during the trip through Mars’ atmosphere (MEDLI2) – will help future human missions land safely and with larger payloads on other worlds.

There are two instruments that will specifically help astronauts on the Red Planet. One (MEDA) will provide key information about the planet’s weather, climate and dust activity, while a technology demonstration (MOXIE) aims to extract oxygen from Mars’ mostly carbon-dioxide atmosphere.

7. You get to ride along

7 Things To Know About The Perseverance Mars Rover

Perseverance and other parts of the Mars 2020 spacecraft feature 23 cameras, which is more than any other interplanetary mission in history. Raw images from the camera are set to be released on the mission website.

There are also three silicon chips with the names of nearly 11 million people who signed up to send their names to Mars.

And you can continue to follow the mission on Twitter and Facebook. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Are there any parts of the Earth still left unexplored?


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags