Laravel

Mystery - Blog Posts

5 years ago

How Gravity Warps Light

Gravity is obviously pretty important. It holds your feet down to Earth so you don’t fly away into space, and (equally important) it keeps your ice cream from floating right out of your cone! We’ve learned a lot about gravity over the past few hundred years, but one of the strangest things we’ve discovered is that most of the gravity in the universe comes from an invisible source called “dark matter.” While our telescopes can’t directly see dark matter, they can help us figure out more about it thanks to a phenomenon called gravitational lensing.

The Gravity of the Situation

Anything that has mass is called matter, and all matter has gravity. Gravity pulls on everything that has mass and warps space-time, the underlying fabric of the universe. Things like llamas and doughnuts and even paper clips all warp space-time, but only a tiny bit since they aren’t very massive.

image

But huge clusters of galaxies are so massive that their gravity produces some pretty bizarre effects. Light always travels in a straight line, but sometimes its path is bent. When light passes close to a massive object, space-time is so warped that it curves the path the light must follow. Light that would normally be blocked by the galaxy cluster is bent around it, producing intensified — and sometimes multiple — images of the source. This process, called gravitational lensing, turns galaxy clusters into gigantic, intergalactic magnifying glasses that give us a glimpse of cosmic objects that would normally be too distant and faint for even our biggest telescopes to see.

image

Hubble “Sees” Dark Matter

Let’s recap — matter warps space-time. The more matter, the stronger the warp and the bigger its gravitational lensing effects. In fact, by studying “lensed” objects, we can map out the quantity and location of the unseen matter causing the distortion!

Thanks to gravitational lensing, scientists have measured the total mass of many galaxy clusters, which revealed that all the matter they can see isn’t enough to create the warping effects they observe. There’s more gravitational pull than there is visible stuff to do the pulling — a lot more! Scientists think dark matter accounts for this difference. It’s invisible to our eyes and telescopes, but it can’t hide its gravity!

The mismatch between what we see and what we know must be there may seem strange, but it’s not hard to imagine. You know that people can’t float in mid-air, so what if you saw a person appearing to do just that? You would know right away that there must be wires holding him up, even if you couldn’t see them.

image

Our Hubble Space Telescope observations are helping unravel the dark matter mystery. By studying gravitationally lensed galaxy clusters with Hubble, astronomers have figured out how much of the matter in the universe is “normal” and how much is “dark.” Even though normal matter makes up everything from pickles to planets, there’s about five times more dark matter in the universe than all the normal matter combined!

WFIRST Will Escalate the Search

One of our next major space telescopes, the Wide Field Infrared Survey Telescope (WFIRST), will take these gravitational lensing observations to the next level. WFIRST will be sensitive enough to use weak gravitational lensing to see how clumps of dark matter warp the appearance of distant galaxies. By observing lensing effects on this small scale, scientists will be able to fill in more of the gaps in our understanding of dark matter.

WFIRST will observe a sky area 100 times larger than Hubble does, but with the same awesome image quality. WFIRST will collect so much data in its first year that it will allow scientists to conduct in-depth studies that would have taken hundreds of years with previous telescopes.

image

WFIRST’s weak gravitational lensing observations will allow us to peer even further back in time than Hubble is capable of seeing. Scientists believe that the universe’s underlying dark matter structure played a major role in the formation and evolution of galaxies by attracting normal matter. Seeing the universe in its early stages will help scientists unravel how it has evolved over time and possibly provide clues to how it may continue to evolve. We don’t know what the future will hold, but WFIRST will help us find out.

image

This science is pretty mind-bending, even for scientists. Learn more as our current and future telescopes plan to help unlock these mysteries of the universe...

Hubble: https://www.nasa.gov/mission_pages/hubble/main/index.html WFIRST: https://wfirst.gsfc.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Jupiter's Great Red Spot Getting Taller as it Shrinks

Discover how a team of our scientists has uncovered evidence that Jupiter’s Great Red Spot is growing taller as it gets smaller.

Though once big enough to swallow three Earths with room to spare, Jupiter's Great Red Spot has been shrinking for a century and a half. Nobody is sure how long the storm will continue to contract or whether it will disappear altogether.

Jupiter's Great Red Spot Getting Taller As It Shrinks

A new study suggests that it hasn't all been downhill, though. The storm seems to have increased in area at least once along the way, and it's growing taller as it gets smaller.

image

Observations of Jupiter date back centuries, but the first confirmed sighting of the Great Red Spot was in 1831. But until then, researchers aren't certain whether earlier observers who saw a red spot on Jupiter were looking at the same storm.

Jupiter's Great Red Spot Getting Taller As It Shrinks

Amy Simon, an expert in planetary atmospheres at our Goddard Space Flight Center in Greenbelt, Maryland, and her team traced the evolution of the Great Red Spot, analyzing its size, shape, color  and drift rate. They also looked at the storm's internal wind speeds, when that information was available from spacecraft.

image

This new study confirms that the storm has been decreasing in diameter overall since 1878 and is now big enough to accommodate just over one Earth at this point. Then again, the historical record indicates the area of the spot grew temporarily in the 1920s. Scientists aren't sure why it grew for a bit.

image

Because the storm has been contracting, the researchers expected to find the already-powerful internal winds becoming even stronger, like an ice skater who spins faster as she pulls in her arms.

image

But that's not what is happening. Instead of spinning faster, the storm appears to be forced to stretch up. It's almost like clay being shaped on a potter's wheel. As the wheel spins, an artist can transform a short, round lump into a tall, thin vase by pushing inward with his hands. The smaller he makes the base, the taller the vessel will grow.

image

The Great Red Spot's color has been deepening, too, becoming is a more intense orange color since 2014. Researchers aren't sure why that's happening, but it's possible that the chemicals coloring the storm are being carried higher into the atmosphere as the spot stretches up. At higher altitudes, the chemicals would be subjected to more UV radiation and would take on a deeper color.

image

In some ways, the mystery of the Great Red Spot only seems to deepen as the iconic storm gets smaller. Researchers don't know whether the spot will shrink a bit more and then stabilize, or break apart completely.

For more information, go here/watch this:

For the full story, click HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags