Light Echoes Used to Study Protoplanetary Disks : This illustration shows a star surrounded by a protoplanetary disk. A new study uses data from NASAs Spitzer Space Telescope and four ground-based telescopes to determine the distance from a star to the inner rim of its surrounding protoplanetary disk. Researchers used a method called photo-reverberation, also known as light echoes.
js
Observing stars is all well and good, but how can I use stars to make my life easier? With a few handy tools and a lot of complicated math and careful table scouting, of course! Okay, it’s not actually any easier to tell where you are, predict when the Sun will rise or where the star Rigel will be at 11:36pm EST, or guess when the next eclipse will be using these tools, but if you don’t have a computer handy maybe it will help.
I did my best to describe all these odd devices in the clearest terms I could but you can hit me up with questions if you have them! Definitely check out some of the video links if you can’t quite picture what I said. I’m also on Twitter at @HDandtheVoid if you’d rather ask me there. And please check out the podcast on iTunes, rate it or review it if you’d like, and subscribe! I’ll always post all the extras here on Tumblr but iTunes is probably more convenient for downloading.
Below the cut are my sources, music credits, vocab list, and the transcript. I mention a play and a story/book and quote an astronomy book in this episode so if you want to see that written down, those sources are there as well. Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… anything’s helpful!
*(My thoughts were planets, spectroscopy, or Edmond Halley. Let me know by the 6th and I’ll have the next podcast up by July 17th!)
armillary sphere - a device showing the apparent daily motion of the Sun depending on the season, the date, and the latitude of observation. See example video in the link.
Antikythera Mechanism - a device used to establish a calendar based on the Metonic Cycle; eclipse prediction; the location of planets, the Sun, and the Moon on a particular day; and determine the phase of the Moon on a particular day. See example video in the link.
astrolabe - a device for measuring the altitudes of certain celestial objects and for calculating latitude before the development of the sextant. One side is indented, the space called the mater, and can hold a plate depicting the local latitude. Over this plate is a rete, which points out different fixed stars as well as the Sun’s ecliptic, divided into 30 degree sections representing the zodiac signs. On top of the rete was a clock-like hand that stretched the diameter of the astrolabe, called the rule. The rule and rete could be rotated over the face of the plate. See example in the link.
azimuth - a section of the horizon measured between a fixed point and the vertical circle passing through the center of an object. See example in the link.
declination - the angle of the Sun relative to the equator. The Sun’s angle changes with the seasons.
ecliptic - the path of the Sun over the course of a year.
exeligmos cycle - a cycle that is 3 times the saros cycle, or 669 months. It is more accurate means of predicting eclipses and additionally predicts eclipses that will be visible from a location close to the initial eclipse.
kamal - an Arabic navigation tool consisting of a knotted string and a piece of wood. A navigator would tie a knot in the string and, by holding it in their teeth, sight the North Star along the top of the wooden piece and the horizon along the bottom. To return home, the navigator would sail north or south to bring Polaris to the altitude they had observed in their home port, then turn left or right and sail down the latitude, keeping Polaris at a constant angle. Over time, Arab navigators started tying knots at regular intervals of a fingerwidth, called an issbah, that’s about 1 degree and 36 minutes.
metonic cycle - a 19-year cycle developed by the Babylonians to sync their lunar months with the solar year. In the Metonic cycle, there would be 12 years that lasted 12 lunar months and 7 years that lasted 13 months.
saros cycle - a cycle of 223 months that is used to predict eclipses.
sextant - a device used to determine an observer’s location based on the observation of a known celestial object and a lot of calculation. It is still in use by sailors.
stereographic projection - a process for depicting a spherical, 3-dimensional object on a flat surface. An imaginary line is drawn from one point on the object to a point on the flat surface, following an angle to achieve the same relationship between each point on the object. See example in the link
Video of how to use an armillary sphere
History of the armillary sphere via University of Cambridge
Video lecture on using an armillary sphere. It sounds like he’s trying to sell it.
Video of how to use an astrolabe
Make your own astrolabe suggestions via In the Sky.org
An old guy kept up a website on astrolabes but he died in April 2016, it’s very sad. Excellent info though.
Explanation of unequal hours
Pullman Car Hiawatha summary, just to prove it’s a real play
Chaucer’s Canterbury Tales with its brief astrolabe mention
Video on how to use a sextant
The many uses of a sextant via Classic Sailing
Why a sextant works via Trailnotes
The history of the sextant
The definition of azimuth
The definition of declination
Video of Antikythera Mechanism’s virtual model based on a theoretical and mechanical model. Just a theoretical model!
Antikythera Mechanism via Smithsonian Magazine
The Antikythera Mechanism Research Project website
Antikythera Mechanism via The New Yorker
Saros cycle via NASA
Saros and Exeligmos cycles
Crouper, Heather and Nigel Henbest. The History of Astronomy. Firefly Books: Buffalo, NY, 2007.
“The circular gear wheels of the Antikythera Mechanism reflect the ancient Greeks’ preoccupation with circles—and with the idea that everything in the sky moves around in circular paths, because the heavens are the home of perfection, and a circle is the ideal shape.” (59)
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Brooklyn Nights Guitar’ loop from Garageband
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
After over a century of observations and several theories, scientists may have finally nailed the origin of the high-speed plasma blasting through the Sun’s atmosphere several times a day. Using a state-of-the-art computer simulation, researchers have developed a detailed model of these plasma jets, called spicules.
The new findings answer some of the bigger questions in solar physics, including how these plasma jets form and why the Sun’s outer atmosphere is far hotter than the surface.
“This is the first model that has been able to reproduce all the features observed in spicules,” Juan Martinez-Sykora, lead author and astrophysicist at the Bay Area Environmental Research Institute in California, told ScienceAlert.
Continue Reading.
Did you know that when we classify stars, we’re comparing different types of stars but also stars at different stages of their life cycles? This is the second in a two-part episode about star classifications (go listen to Part 1 if you haven’t already; or listen to this one first and then listen to Part 1, it’s not exactly spoiler territory here). In this podcast, I talk about the various ways we've chosen to interpret observational data on stars, from observing the bright sky-dots to evaluating how bright they are by comparing them to each other, and all the new things we can do with new observational techniques. Never fear, Harvard observatory’s computers make a significant appearance again in this one!
I did my best to explain everything in as comprehensible terms as possible but you can hit me up with questions if you have them! I’m also on Twitter at @HDandtheVoid if you’d rather ask me there. And go ahead and check out the podcast on iTunes, rate it or review it if you’d like, and subscribe! I’ll always post all the extras here on tumblr but iTunes is probably more convenient for downloading.
Below the cut are my sources, music credits (thanks Elena for the filler music suggestion, very on-the-nose), vocab list, and the transcript. I mention a couple of books and quote a couple people in this episode so if you want to see that written down, those sources are there as well. Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… anything’s helpful!
*(My thoughts were planets or looking into a couple major astronomers; either Edmond Halley or Tycho Brahe <3 or maybeStephen Hawking? Let me know by the 23rd so I can get a podcast up by July 3rd!)
Charge-Coupled Device (CCD) - a device that moves an electrical charge to shift the signal between incoming photons to turn them into electron charges that can then be read as an image. It’s used in digital cameras and in astronomy for UV-to-infrared applications.
deep-sky object - any cosmological object that isn’t individual stars or something from our Solar System. It’s a classification that includes nebulae, galaxies, and star clusters, and it has its roots in amateur astronomy.
Hipparcos satellite - the European Space Agency ‘high precision parallax collecting satellite’ that operated between 1989 and 1993. It gathered astronomical and photometric data of stars and was highly accurate in positioning and cataloging the star information it acquired on its four-year mission. Its data was published in 1997 in two catalogs: the Hipparcos Catalogue, distributed in print as well as on CDs and mapped 118,218 stars; and the Tycho Catalogue, distributed only on CDs and mapped 1,058,332 stars. The Tycho-2 Catalogue was an updated version of the Tycho Catalogue made with more refined imaging techniques and re-released on CDs and online in 2000 with over 2 million stars mapped.
neutron star - a type of star that has gone supernova, when the surviving core is 1.5 to 3 solar masses and contracts into a small, very dense, very fast-spinning star.
pulsar - a type of neutron stars that spins very, very fast: a kind of variable star that emits light pulses usually between 0.0014 seconds and 8.5 seconds.
stellar photometry/photometrics - measuring the brightness of stars and the changes of brightness over time. Previously used photographic plates and visual equipment in professional observatories, but shifted after an international photoelectric system was established in 1951. Currently we use photoelectric devices, such as CCDs.
stellar spectra classification - developed at Harvard Observatory in the 20th century, a categorization of stars based on stellar surface temperatures rather than actual compositional differences, gravity, or luminosity in stars. From highest temperature to lowest, the seven main stellar types are O, B, A, F, G, K, and M. O, B, and A type stars are often referred to as early spectral types, while cool stars like G, K, and M are known as late type stars, even though these titles are based in disproven ideas about stellar evolution.
Standard stellar types via University of College London
List/timeline of major historical star catalogs
A brief history of early star catalogs, since the International Astronomical Union made a new star catalog in 2016.
A history of the Messier list
A history of the Messier List and how amateur astronomers use it
The Messier List
A really detailed Messier List, including Messier’s own observations on the object along with what it is currently understood to be
`Deep Sky Observers Companion online database
The Caldwell List via SEDS
The Caldwell List via the Astronomical League
Translation of ‘Durchmusterung’ via PONS online translation
Some hilarious mnemonics that are an alternative to the girl-kissing one to remember the order of stellar spectra. I don't know why there’s an entire page dedicated to this but good on you, Caltech.
Photometry overview via the Astronomical Society of South Australia
Hipparcos Catalog via NASA
History of the Hipparcos satellite and subsequent catalogs via ESA
Tycho-2 Catalog via NASA
The Hipparchos and Tycho catalogues online and downloadable if you have a whole lot of storage space to put them in
The U.S. Navy’s Naval Meteorology and Oceanography Command website has a list of recommended informational catalogs, last updated in November 2004
Information on current star charts, specialized and general, and how to download them
The Research Consortium on Nearby Stars’ website, working on cataloging and characterizing all stars within 10 parsecs/32.6 light years of Earth
The Smithsonian Astrophysical Observatory star catalog, which goes to V=9. Please don’t ask me how the hell it works, I didn’t bother ordering it
Another SAO catalog via NASA’s High Energy Astrophysics Science Archive Research Center website
If you can figure out how to navigate this catalog, you should probably take over this podcast for me.
Soba, Dava. The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars. Viking: New York, 2016.
“After all, astronomers could not yet tie any given traits of stars, such as temperature or age, to the various groupings of spectral lines. What they needed was a consistent classification—a holding pattern for the stars—that would facilitate fruitful future research” (91).
“A good number of other blank spaces in her tables pointed up other lacunae, such as missing minimum values, uncertain periods, absent spectra, or questionable variable type” (113).
Annie Jump Cannon: “Since I have done almost all the world’s work in this one branch, it was necessary for me to do most of the talking” (158)
Ogilvie, Marilyn Bailey. Women in Science: Antiquity Through the Nineteenth Century. MIT P: Cambridge, MA, 1986. Located in Google Books preview.
Mack, Pamela E. “Straying from Their Orbits: Women in Astronomy in America.” In Women of Science: Righting the Record. Ed. Gabriele Kass-Simon, Patricia Farnes, Deborah Nash. Indiana U P: Bloomington, IN, 1993 (72-116). Located in Google Books preview.
Selin, Helaine. “Battani” Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer Science & Business Media: Berlin, Germany, 2011. Located in Google Books preview.
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Champagne Supernova’ by Oasis off their album (What’s the Story) Morning Glory?
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
The last episode I posted went up on a very special birthday that I failed to acknowledge or, well, realize was even happening until I saw it on the Google homepage. So, to rectify this oversight, I’m talking about the history of cosmological photography and how we reached the high point of the Hubble Space Telescope, which turned 27 this past April 24th!
Below the cut is some elaboration on the episode itself, including my sources, music credits, a glossary, and a transcript (not an exact record of this episode, but it’s the loose, fairly conversational script I was working with). I mention a couple of books and authors in this episode so if you want to see that written down, those are there too (one of the authors is Chinese and listen, Chinese is at least as hard for me to pronounce as French. I did try though). I’m also on Twitter at @HDandtheVoid, though I keep forgetting I have it. Talk to me on there and maybe I won’t forget!
Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… anything’s helpful at this point!
*(Move fast if you feel strongly about what I research next, though, cuz I have to get it done by May 22nd! My thoughts were henges because I didn’t get to them this week, probes and satellites, the planets, spectroscopy, or maybe black holes? Please hit me up by May 11th so I can start working on it!)
Glossary:
catadioptric/Cassegrain telescope - use lenses and mirrors in combination.
focal length - the distance between the lens and the image sensor of a camera when the subject of the photo is in focus. According to the Nikon website this is usually measured in millimeters, but I’ll take a wild guess and say it’s probably easier to measure it in feet on the Hubble Telescope because that thing is school bus-sized.
Lagrange points - five points where three bodies can orbit each other, yet stay in the same position relative to each other in a stable configuration. L1-L3 are in line with each other, while L4 and L5 are at the points of equilateral triangles in the configuration. See an example specific to the James Webb Telescope in the link.
objective lens - the optical element that gathers light from the object being observed and focuses the light rays to produce an image at the focal point.
reflection telescope - reflects light rays off the concave surface of a parabolic mirror to get an image of a distant object. Higher contrast image, worse color quality.
refraction telescope - uses convex lenses to focus a far-off, dim image. Good color quality, poor contrast.
satellites - objects that move around a larger object. Can be man-made or natural. Geostationary satellites orbit west to east over the equator, moving in the same direction and at the same rate as Earth. Polar-orbiting satellites orbit north to south, which allows them to scan the Earth along longitude lines.
Wilkinson Microwave Anisotropy Probe—a spacecraft operating from 2001 to 2010 which measured temperature differences in the cosmic microwave background radiation leftover from the Big Bang. It orbited at L2, just like the James Webb Telescope will!
Script/Transcript (I do tend to embellish in the moment of recording so it’s not exact, but all the facts are there and I can’t know a fact and not talk about it so trust me, all you’re missing is probably another swear word or two)
Sources:
Facts about telescopes via the Naperville Astronomical Association
More facts about telescopes via Western Washington University
Earth’s atmosphere definition via the Encyclopedia Britannica Online
Correcting for atmospheric interference in astronomical imaging
Info on satellites for K-4th grade via NASA
Info on satellites for 5th-8th grade via NASA
What focal length means in photography via Nikon (the camera brand)
Hermann Oberth’s museum website
The history of NASA’s Orbiting Astronomical Observatories, which an older British gentleman seems to like enough to run a website about it
The history of OAO-3 aka Copernicus via NASA
Info on the Hubble Space Telescope for K-4th grade via NASA
Hubble-T’s 25th anniversary website, which I highly recommend. The timeline is a dream come true in terms of organization and brevity. It was last updated in December 2014, though, since that was when the Hubble was 25, so not a lot of new info there.
What the Hubble Space Telescope looks like, all its parts, and some of its history
What Hubble-T is looking at right now and why
The history of maintenance missions to the Hubble-T
Hubble: The Beginning, a 4-minute documentary video with a couple interviews, including Nancy Roman!
Hubble’s YouTube channel!!!!!!!!
Spitzer Space Telescope website
James Webb Space Telescope website
Hirshfeld, Alan. Starlight Detectives. Bellevue Library Press: NY, 2014.
Liu, Cixin. The Three-Body Problem. Trans. Ken Liu. Tor Books: NY, 2016.
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Supermassive Black Hole’ by Muse off their album Black Holes and Revelations
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
I'm reading Starlight Detectives pretty hard cuz new episode goes up on Monday and let me tell you, I now have a very deep appreciation for the photographs we have of space.
Small Magellanic Cloud: Stunning Infrared Image
For the love of all that’s good and proper click here and zoom way into this image. It’s more than beautiful. The fact that it’s infrared means that we’re able to see past a lot of the dust that would otherwise block our view.
(Image credit: ESA/VISTA)
You may recognize the seventh picture in the slideshow--it’s my profile picture here. Happy birthday Hubble, you’re older than I am!
Welcome to the second episode!
Below the cut are my sources, music credits, a glossary, a timeline of all the people I mention in the podcast, and the script I was working with. I’m on Twitter @HDandtheVoid if you want to tweet at me instead of tumblr-ing me!
Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… any feedback is helpful!
*(My current thoughts are henges, spectroscopy dark matter, or black holes. Let me know by April 27th so I can start researching before I put up the next podcast on May 8th!)
Glossary:
astronomy - first used to describe a field of study in the 12th century, it concerns the study of objects and matter outside the earth's atmosphere, as well as their physical and chemical properties
corpuscles - any very small particles. A precursor to atoms.
cosmology—the study of the properties of our universe as a whole.
eccentric orbit - an orbit proposed by Ptolemy’s model of the universe where each planet's circular orbit is not centered on the Earth but at a point slightly away from Earth. See an example in the link.
elliptic orbit - also known as a Kepler orbit, it is an orbital system where a smaller body, like the moon or the planets, orbits a larger body like the Earth or the Sun, with the Earth or Sun at one focus of the ellipse while the other focus is empty. See an example in the link.
epicycle - a planet’s smaller orbit around a point on the larger orbiting sphere it is assigned to. See an example in the link.
Platonic Solid - a regular, 3-dimensional, convex polyhedron constructed by regular polygonal faces with the same number of faces meeting at each vertex. Only five shapes meet these criteria: tetrahedron, cube, octahedron, dodecahedron, and icosahedron. See an example in the link.
precession of the equinoxes - also called axial precession, it is a slow and continuous change in the orientation of an astronomical body's rotational axis due to gravity. On Earth, it is seen as a westward movement of the equinoxes along the ecliptic relative to the fixed stars, opposite to the yearly motion of the Sun along the ecliptic. See an example in the link.
solar system - first used in 1704, this term describes the Sun together with the group of celestial bodies that are held by its attraction and orbit around it.
Wilkinson Microwave Anisotropy Probe—a spacecraft operating from 2001 to 2010 which measured temperature differences in the cosmic microwave background radiation leftover from the Big Bang.
Script/Transcript (It’s not exactly what I said, but it’s what I was going off of. It’s conversational and it’s less rambly than what I actually said)
Timeline of people mentioned:
Claudius Ptolemy, Greek (100-170) Al-Hasan Ibn al-Haytham, Arab (965-1040) Nicolaus Copernicus, Polish (1473-1543) Tycho Brahe, Danish (1541-1601) Giordano Bruno, Italian (1548-1600) Galileo Galilei, Italian (1564-1642) Johannes Kepler, German (1571-1630) René Descartes, French (1596-1650) Sir Isaac Newton, English (1642-1726/7) Edmond Halley, English (1656-1742) Immanuel Kant, German (1724-1804) Pierre-Simon, marquis de Laplace, French (1749-1827) William Huggins, English (1824-1910) Heber Curtis, American (1872-1942) V. M. Slipher, American (1875-1969) Albert Einstein, German (1879-1955) Harlow Shapley, American (1885-1972) Edwin Hubble, American (1889-1953)
Sources:
Mars in retrograde during Tycho’s time
History of the idea of black holes
Size of the universe since 1919, presented as a teacher resource
Timeline of cosmological models
Current cosmological model
Measuring the size of our universe via NASA, with links to further universe-size resources
19th-century size of our universe debate between Shapley and Curtis
Cosmological Constant via NASA
Cosmological Constant via HubbleSite
NASA’s breakdown of the makeup of our universe
Dark Energy via NASA
Kirshner, Robert P. “Hubble’s Diagram and Cosmic Expansion.” In Proceedings of the National Academy of Sciences of the United States of America 101.1 (Jan. 6, 2004), 8-13. http://www.jstor.org/stable/3148363 [accessed 2 December 2013].
McLennan, Evan. Cosmological Evolution: Critical and Constructive. 2nd ed., Gazette-Times Press: Corvallis, OR, 1916.
Pickover, Clifford A. Archimedes to Hawking: Laws of Science and the Great Minds Behind Them. Oxford UP: NY, 2008.
Sabra, A. I. “Configuring the Universe: Aporetic, Problem Solving, and Kinemaic Modeling as Themes of Arabic Astronomy.” In Perspectives on Science 6 (1998), 288-330. Retrieved from http://www.mitpressjournals.org/loi/posc [accessed Oct. 4, 2013].
Shank, Michael H. “Setting the Stage: Galileo in Tuscany, Veneto, and Rome.” In The Church and Galileo, 57-87. Edited by Ernan McMullin. Notre Dame, IN: U of Notre Dame P, 2005.
Sharratt, Michael. Galileo: Decisive Innovator. New York: Cambridge U P, 1994.
Smith, R. W. “The Origins of the Velocity-Distance Relation.” In Journal for the History of Astronomy 10.29 (Oct 1979), 133-165.
Westfall, Richard S. Essays on the Trial of Galileo. Vatican City: Vatican Observatory Foundation, 1989.
…and class notes from a class on Ancient Astronomy I took with Prof. James Evans.
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Epigram’ by Tycho off their album Dive
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
Asteroid Watch logo. April 7, 2017
Artist’s impression of a Near-Earth Asteroid passing by Earth. Image Credit: ESA
A relatively large near-Earth asteroid discovered nearly three years ago will fly safely past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance from Earth to the moon. Although there is no possibility for the asteroid to collide with our planet, this will be a very close approach for an asteroid of this size. The asteroid, known as 2014 JO25, was discovered in May 2014 by astronomers at the Catalina Sky Survey near Tucson, Arizona – a project of NASA’s NEO Observations Program in collaboration with the University of Arizona. (An NEO is a near-Earth object). Contemporary measurements by NASA’s NEOWISE mission indicate that the asteroid is roughly 2,000 feet (650 meters) in size, and that its surface is about twice as reflective as that of the moon. At this time very little else is known about the object’s physical properties, even though its trajectory is well known. The asteroid will approach Earth from the direction of the sun and will become visible in the night sky after April 19. It is predicted to brighten to about magnitude 11, when it could be visible in small optical telescopes for one or two nights before it fades as the distance from Earth rapidly increases.
Asteroid 2014 JO25
Video above: This computer-generated image depicts the flyby of asteroid 2014 JO25. The asteroid will safely fly past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance between Earth and the moon. Video Credits: NASA/JPL-Caltech. Small asteroids pass within this distance of Earth several times each week, but this upcoming close approach is the closest by any known asteroid of this size, or larger, since asteroid Toutatis, a 3.1-mile (five-kilometer) asteroid, which approached within about four lunar distances in September 2004. The next known encounter of an asteroid of comparable size will occur in 2027 when the half-mile-wide (800-meter-wide) asteroid 1999 AN10 will fly by at one lunar distance, about 236,000 miles (380,000 kilometers). The April 19 encounter provides an outstanding opportunity to study this asteroid, and astronomers plan to observe it with telescopes around the world to learn as much about it as possible. Radar observations are planned at NASA’s Goldstone Solar System Radar in California and the National Science Foundation’s Arecibo Observatory in Puerto Rico, and the resulting radar images could reveal surface details as small as a few meters. The encounter on April 19 is the closest this asteroid has come to Earth for at least the last 400 years and will be its closest approach for at least the next 500 years. Also on April 19, the comet PanSTARRS (C/2015 ER61) will make its closest approach to Earth, at a very safe distance of 109 million miles (175 million kilometers). A faint fuzzball in the sky when it was discovered in 2015 by the Pan-STARRS NEO survey team using a telescope on the summit of Haleakala, Hawaii, the comet has brightened considerably due to a recent outburst and is now visible in the dawn sky with binoculars or a small telescope. JPL manages and operates NASA’s Deep Space Network, including the Goldstone Solar System Radar, and hosts the Center for Near-Earth Object Studies for NASA’s Near-Earth Object Observations Program, an element of the Planetary Defense Coordination Office within the agency’s Science Mission Directorate. More information about asteroids and near-Earth objects can be found at: http://cneos.jpl.nasa.gov http://www.jpl.nasa.gov/asteroidwatch For more information about NASA’s Planetary Defense Coordination Office, visit: http://www.nasa.gov/planetarydefense For asteroid and comet news and updates, follow AsteroidWatch on Twitter: https://twitter.com/AsteroidWatch Image (mentioned), Video, Text, Credits: NASA/Tony Greicius/JPL/DC Agle. Greetings, Orbiter.ch Full article
The first episode is here! I have never done this before and right now, I’m planning to put up a podcast every two weeks.
Below the cut is some elaboration on the episode itself, including my sources, music credits, a glossary, and a transcript (not an exact record of this episode, but it’s the script I was working with and it’s both conversational and also a little less rambling than what I actually said). I’m on Twitter now, too: @HDandtheVoid. I don’t know what I’ll put there yet except maybe fun little facts and, of course, notifications on when an episode goes up.
Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… anything’s helpful at this point!
*(Move fast if you feel strongly about what I research next, though, cuz I have to get it done by April 24th—I don’t mention it in the podcast but this is me telling you now so I am held accountable; April 24th is the next podcast.)
Glossary:
cosmic microwave background radiation—the electromagnetic radiation left over from the time of recombination in Big Bang cosmology.
cosmology—the study of the properties of our universe as a whole.
heliacal rising—when a star or constellation rises at the same time or just before the sun.
parapegma—a list of star rising times.
retrograde—the apparent motion of a planet in a direction opposite to that of other bodies within its system, as observed from a particular vantage point.
sidereal year—the time required for the earth to complete an orbit of the sun relative to the stars.
star catalog—an astronomical catalog that lists stars.
star chart/map—A star chart or star map is a map of the night sky. Astronomers divide these into grids to use them more easily. They are used to identify and locate astronomical objects such as stars, constellations, and galaxies.
tropical year—the interval at which seasons repeat and the basis for the calendar year.
Wilkinson Microwave Anisotropy Probe—a spacecraft operating from 2001 to 2010 which measured temperature differences in the cosmic microwave background radiation leftover from the Big Bang. (I said ‘anistropy’ in the podcast, whoops)
Script/Transcript (It’s not exactly what I said, but it’s what I was going off of. It’s conversational and it’s less rambly than what I actually said)
Sources:
Cosmic microwave background radiation info
More Big Bang info
Timeline of the Big Bang
Babylonian constellation/zodiac list
Babylonian star catalog
Retrograde motion
Evans, James. The History and Practice of Ancient Astronomy. Oxford UP: New York, 1998.
...and class notes from a class on Ancient Astronomy I took with Prof. James Evans.
My argument for using Wikipedia is that it is shockingly accurate when it comes to ancient material. I’m going to try to stick to academic and government sources though.
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
UGC 12591: The Fastest Rotating Galaxy Known : Why does this galaxy spin so fast? To start, even identifying which type of galaxy UGC 12591 is difficult – it has dark dust lanes like a spiral galaxy but a large diffuse bulge of stars like a lenticular. Surprisingly observations show that UGC 12591 spins at about 480 km/sec, almost twice as fast as our Milky Way, and the fastest rotation rate yet measured. The mass needed to hold together a galaxy spinning this fast is several times the mass of our Milky Way Galaxy. Progenitor scenarios for UGC 12591 include slow growth by accreting ambient matter, or rapid growth through a recent galaxy collision or collisions – future observations may tell. The light we see today from UGC 12591 left about 400 million years ago, when trees were first developing on Earth. via NASA
js
Hubble Showcases a Remarkable Galactic Hybrid : UGC 12591s classification straddles somewhere between a lenticular and a spiral galaxy. It lies just under 400 million light-years from us in the PiscesPerseus Supercluster.
js
Spacewalk complete and new astronaut record set! Shane Kimbrough and Peggy Whitson of NASA successfully reconnected cables and electrical connections on an adapter-3 that will provide the pressurized interface between the station and the second of two international docking adapters to be delivered to the complex to support the dockings of U.S. commercial crew spacecraft in the future. The duo were also tasked with installing four thermal protection shields on the Tranquility module of the International Space Station.
Having completed her eighth spacewalk, Whitson now holds the record for the most spacewalks and accumulated time spacewalking by a female astronaut. Spacewalkers have now spent a total of 1,243 hours and 42 minutes outside the station during 199 spacewalks in support of assembly and maintenance of the orbiting laboratory.
Astronaut Thomas Pesquet of ESA posted this image and wrote, ’ Shane and Peggy on their way to their first #spacewalk tasks.’
Credit: ESA/NASA
The Elephants Trunk in IC 1396 : Like an illustration in a galactic Just So Story, the Elephants Trunk Nebula winds through the emission nebula and young star cluster complex IC 1396, in the high and far off constellation of Cepheus. Of course, the cosmic elephants trunk is over 20 light-years long. This composite was recorded through narrow band filters that transmit the light from ionized hydrogen, sulfur, and oxygen atoms in the region. The resulting image highlights the bright swept-back ridges that outline pockets of cool interstellar dust and gas. Such embedded, dark, tendril-shaped clouds contain the raw material for star formation and hide protostars within the obscuring cosmic dust. Nearly 3,000 light-years distant, the relatively faint IC 1396 complex covers a large region on the sky, spanning over 5 degrees. via NASA
js
Bright Spiral Galaxy M81 : One of the brightest galaxies in planet Earths sky is similar in size to our Milky Way Galaxy: big, beautiful M81. This grand spiral galaxy can be found toward the northern constellation of the Great Bear . This superbly detailed view reveals M81s bright yellow nucleus, blue spiral arms, and sweeping cosmic dust lanes with a scale comparable to the Milky Way. Hinting at a disorderly past, a remarkable dust lane actually runs straight through the disk, to the left of the galactic center, contrary to M81s other prominent spiral features. The errant dust lane may be the lingering result of a close encounter between M81 and its smaller companion galaxy, M82. Scrutiny of variable stars in M81 has yielded one of the best determined distances for an external galaxy 11.8 million light-years. via NASA
js
It made it!
Thank you SpaceX. You just gave us the keys to our dreams. So much is now possible…
(Image credit: SpaceX SES-10 stream)
Ten minutes till this happens! I can’t watch it live but I’m excited to see what happens in the aftermath…
In about 20 minutes SpaceX will attempt to reuse a rocket booster they’ve already used before. If they succeed it could be a very serious step forward in space exploration capabilities.
Go SpaceX. Pleassssse…
NGC 3132: The Eight Burst Nebula : Its the dim star, not the bright one, near the center of NGC 3132 that created this odd but beautiful planetary nebula. Nicknamed the Eight-Burst Nebula and the Southern Ring Nebula, the glowing gas originated in the outer layers of a star like our Sun. In this representative color picture, the hot blue pool of light seen surrounding this binary system is energized by the hot surface of the faint star. Although photographed to explore unusual symmetries, its the asymmetries that help make this planetary nebula so intriguing. Neither the unusual shape of the surrounding cooler shell nor the structure and placements of the cool filamentary dust lanes running across NGC 3132 are well understood. via NASA
js
NASA - Hubble Space Telescope patch. March 24, 2017
Some galaxies are harder to classify than others. Here, Hubble’s trusty Wide Field Camera 3 (WFC3) has captured a striking view of two interacting galaxies located some 60 million light-years away in the constellation of Leo (The Lion). The more diffuse and patchy blue glow covering the right side of the frame is known as NGC 3447 — sometimes NGC 3447B for clarity, as the name NGC 3447 can apply to the overall duo. The smaller clump to the upper left is known as NGC 3447A. Overall, we know NGC 3447 comprises a couple of interacting galaxies, but we’re unsure what each looked like before they began to tear one another apart. The two sit so close that they are strongly influenced and distorted by the gravitational forces between them, causing the galaxies to twist themselves into the unusual and unique shapes seen here. NGC 3447A appears to display the remnants of a central bar structure and some disrupted spiral arms, both properties characteristic of certain spiral galaxies. Some identify NGC 3447B as a former spiral galaxy, while others categorize it as being an irregular galaxy.
Hubble Space Telescope
For Hubble’s image of the Whirlpool Galaxy, visit: http://hubblesite.org/ http://www.nasa.gov/hubble http://www.spacetelescope.org/ Image, Animation, Credits: ESA/Hubble & NASA/Text Credits: European Space Agency/NASA/Karl Hille. Best regards, Orbiter.ch Full article
30 Doradus, located in the heart of the Tarantula nebula, is the brightest star-forming region in our galactic neighborhood. The nebula resides 170,000 light-years away in the Large Magellanic Cloud. Links to very large images in comments.
js
A Giant Star Factory in Neighboring Galaxy NGC 6822 NASA
js
This Black Eye Galaxy that got its name from the band of light absorbing dust appearing in front of the star systems bright center in the Hubble space telescope.
via reddit