Take a dive between Saturn and its rings to see what our Cassini spacecraft saw during its first daring plunge on April 26!
As Cassini made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. The video begins with a view of the vortex at Saturn's north pole, then heads past the outer boundary of the planet's hexagon-shaped jet stream and continues further southward.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Jupiter climbs higher in the southeast sky earlier in the evening this month, instead of having to wait until midnight for the planet to make an appearance. You can even see with just a pair of binoculars--even the four Galilean moon!
You can even see with just a pair of binoculars--even Io, Europa, Ganymede and Callisto--the four Galilean moons--as they change position each night!
Our moon appears near Jupiter in the nighttime sky from May 5-8.
The moon joins Venus and Mercury in the eastern sky just before sunrise on May 22 and May 23.
Later in the month, our moon pairs up with Mars in the west-northwest sky on May 26.
Saturn will be visible before midnight in early May, rising about 11:30 p.m. and by 9:30 p.m. later in the month. The best time to see Saturn Saturn is when it’s higher in the sky after midnight near the end of the month.
Using a telescope, you may be able to see Saturn’s cloud bands, or even a glimpse of Saturn’s north polar region--views that were beautifully captured by our Cassini spacecraft.
This unprocessed image shows features in Saturn's atmosphere from closer than ever before. The view was captured by our Cassini spacecraft during its first Grand Finale dive between the planet and its rings on April 26, 2017.
As Cassini dove through the gap, it came within about 1,900 miles (3,000 kilometers) of Saturn's cloud tops (where the air pressure is 1 bar -- comparable to the atmospheric pressure of Earth at sea level) and within about 200 miles (300 kilometers) of the innermost visible edge of the rings.
See all the unprocessed images from Cassini: https://saturn.jpl.nasa.gov/galleries/raw-images/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For the first time ever, our Cassini spacecraft dove through the narrow gap between Saturn and its rings on April 26. At 5 a.m. EDT, Cassini crossed the ring plane with its science instruments turned on and collecting data.
During this dive, the spacecraft was not in contact with Earth. The first opportunity to regain contact with the spacecraft is expected around 3 a.m. EDT on April 27.
This area between Saturn and its rings has never been explored by a spacecraft before. What we learn from these daring final orbits will further our understanding of how giant planets, and planetary systems everywhere, form and evolve.
So, you might be asking…how did this spacecraft maneuver its orbit between Saturn and its rings? Well…let us explain!
On April 22, Cassini made its 127th and final close approach to Saturn’s moon Titan. The flyby put the spacecraft on course for its dramatic last act, known as the Grand Finale.
As the spacecraft passed over Titan, the moon’s gravity bent its path, reshaping the robotic probe’s orbit slightly so that instead of passing just outside Saturn’s main rings, Cassini would begin a series of 22 dives between the rings and the planet.
With this assist, Cassini received a large increase in velocity of approximately 1,925 mph with respect to Saturn.
This final chapter of exploration and discovery is in many ways like a brand-new mission. Twenty-two times, the Cassini spacecraft will dive through the unexplored space between Saturn and its rings. What we learn from these ultra-close passes over the planet could be some of the most exciting revelations ever returned by the long-lived spacecraft.
Throughout these daring maneuvers, updates will be posted on social media at:
@CassiniSaturn on Twitter @NASAJPL on Twitter
Updates will also be available online at: https://saturn.jpl.nasa.gov/mission/grand-finale/milestones/
Follow along with us during this mission’s Grand Finale!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our star sprouting coronal loops courtesy of the NASA sun team. See the full video: https://go.nasa.gov/2p47Lt2
Answer: Mercury, the closest planet to the sun. Watch the video: https://svs.gsfc.nasa.gov/11184
Only Earth has more satellites studying it. Full video: https://svs.gsfc.nasa.gov/4414
Check out NASA's satellite fleet of Earth observers. See the video: https://svs.gsfc.nasa.gov/12586
Thanks, Hubble Space Telescope! See the video: https://svs.gsfc.nasa.gov/12021
Our Cassini spacecraft starts her 4.5-month Grand Finale this week. Full video: https://saturn.jpl.nasa.gov/resources/7628
Winds on Neptune travel faster than the speed of sound. Full video: https://svs.gsfc.nasa.gov/11349
This one features the planet Uranus doing pop and lock. Full video: https://youtu.be/CWuWoiHmXUs
Thanks to our New Horizons mission, we’ve been able to get up close and with Pluto. Full video: https://svs.gsfc.nasa.gov/12080
TRAPPIST-1 is a treasure trove of seven Earth-sized planets orbiting a distant star. Full video: https://www.jpl.nasa.gov/video/details.php?id=1459
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our ongoing exploration of the solar system has yielded more than a few magical images. Why not keep some of them close by to inspire your own explorations? This week, we offer 10 planetary photos suitable for wallpapers on your desktop or phone. Find many more in our galleries. These images were the result of audacious expeditions into deep space; as author Edward Abbey said, "May your trails be crooked, winding, lonesome, dangerous, leading to the most amazing view."
This self-portrait of NASA's Curiosity Mars rover shows the robotic geologist in the "Murray Buttes" area on lower Mount Sharp. Key features on the skyline of this panorama are the dark mesa called "M12" to the left of the rover's mast and pale, upper Mount Sharp to the right of the mast. The top of M12 stands about 23 feet (7 meters) above the base of the sloping piles of rocks just behind Curiosity. The scene combines approximately 60 images taken by the Mars Hand Lens Imager, or MAHLI, camera at the end of the rover's robotic arm. Most of the component images were taken on September 17, 2016.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
NASA's New Horizons spacecraft captured this high-resolution, enhanced color view of Pluto on July 14, 2015. The image combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). Pluto's surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
On July 19, 2013, in an event celebrated the world over, our Cassini spacecraft slipped into Saturn's shadow and turned to image the planet, seven of its moons, its inner rings — and, in the background, our home planet, Earth. This mosaic is special as it marks the third time our home planet was imaged from the outer solar system; the second time it was imaged by Cassini from Saturn's orbit, the first time ever that inhabitants of Earth were made aware in advance that their photo would be taken from such a great distance.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
Before leaving the Pluto system forever, New Horizons turned back to see Pluto backlit by the sun. The small world's haze layer shows its blue color in this picture. The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon Titan. The source of both hazes likely involves sunlight-initiated chemical reactions of nitrogen and methane, leading to relatively small, soot-like particles called tholins. This image was generated by combining information from blue, red and near-infrared images to closely replicate the color a human eye would perceive.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
A huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from Cassini. This picture, captured on February 25, 2011, was taken about 12 weeks after the storm began, and the clouds by this time had formed a tail that wrapped around the planet. The storm is a prodigious source of radio noise, which comes from lightning deep within the planet's atmosphere.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
Another massive storm, this time on Jupiter, as seen in this dramatic close-up by Voyager 1 in 1979. The Great Red Spot is much larger than the entire Earth.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
Jupiter is still just as stormy today, as seen in this recent view from NASA's Juno spacecraft, when it soared directly over Jupiter's south pole on February 2, 2017, from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. From this unique vantage point we see the terminator (where day meets night) cutting across the Jovian south polar region's restless, marbled atmosphere with the south pole itself approximately in the center of that border. This image was processed by citizen scientist John Landino. This enhanced color version highlights the bright high clouds and numerous meandering oval storms.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
X-rays stream off the sun in this image showing observations from by our Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by our Solar Dynamics Observatory (SDO). The NuSTAR data, seen in green and blue, reveal solar high-energy emission. The high-energy X-rays come from gas heated to above 3 million degrees. The red channel represents ultraviolet light captured by SDO, and shows the presence of lower-temperature material in the solar atmosphere at 1 million degrees.
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
This image from NASA's Mars Reconnaissance Orbiter shows Victoria crater, near the equator of Mars. The crater is approximately half a mile (800 meters) in diameter. It has a distinctive scalloped shape to its rim, caused by erosion and downhill movement of crater wall material. Since January 2004, the Mars Exploration Rover Opportunity has been operating in the region where Victoria crater is found. Five days before this image was taken in October 2006, Opportunity arrived at the rim of the crater after a drive of more than over 5 miles (9 kilometers). The rover can be seen in this image, as a dot at roughly the "ten o'clock" position along the rim of the crater. (You can zoom in on the full-resolution version here.)
800 x 600
1024 x 768
1280 x 1024
1600 x 1200
1280 x 800
1440 x 900
1920 x 1200
Last, but far from least, is this remarkable new view of our home planet. Last week, we released new global maps of Earth at night, providing the clearest yet composite view of the patterns of human settlement across our planet. This composite image, one of three new full-hemisphere views, provides a view of the Americas at night from the NASA-NOAA Suomi-NPP satellite. The clouds and sun glint — added here for aesthetic effect — are derived from MODIS instrument land surface and cloud cover products.
Full Earth at night map
Americas at night
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hearing a lot about ocean worlds today? Let’s dive in and see what this news is all about...
We once thought oceans made our planet unique, but we’re now coming to realize that ‘ocean worlds’ are all around us.
Two veteran NASA missions are providing new details about icy, ocean-bearing moons of Jupiter and Saturn, further heightening the scientific interest of these and other ‘ocean worlds’ in our solar system and beyond. The findings are presented in papers published Thursday by researchers with our Cassini mission to Saturn and Hubble Space Telescope.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Tuesday, April 4 at 3 p.m. EDT (noon PDT), At Jet Propulsion Laboratory, the Cassini team host a news briefing to discuss the mission's Grand Finale.
Tune in Tuesday: youtube.com/nasajpl/live
Cassini left Earth with less than 1/30th of the propellant needed to power all her adventures at Saturn. The navigation team used the gravity of Saturn's giant moon Titan to change course and extend the spacecraft's exploration of Saturn. Titan also provides the gravity assist to push Cassini into its final orbits.
More on Cassini's navigation: saturn.jpl.nasa.gov/mission/spacecraft/navigation/
Cassini is an orbiter that was named for 18th century astronomer Giovanni Domenico Cassini. She was designed to be captured by Saturn's gravity and then explore it in detail with a suite of 12 powerful science instruments.
More on the Spacecraft: saturn.jpl.nasa.gov/mission/spacecraft/cassini-orbiter/
Cassini carried the European Space Agency's Huygens Probe, which in 2005 descended through Titan's thick, perpetual clouds and made the most distant landing to date in our solar system.
More on Huygens: saturn.jpl.nasa.gov/mission/spacecraft/huygens-probe/
Your mobile phone likely captures dozens of megapixels in images. Cassini, using 1990s technology closer to one megapixel cameras, has returned some of the most stunning images in the history of solar system exploration.
Cassini Hall of Fame Images: go.nasa.gov/2oec6H2 More on Cassini's Cameras: saturn.jpl.nasa.gov/imaging-science-subsystem/
Those great images have inspired artist's and amateur image processors to create truly fantastic imagery inspired by the beauty of Saturn. Feeling inspired? There's still time to share your Cassini-inspired art with us.
Cassini Inspires Campaign: saturn.jpl.nasa.gov/mission/cassiniinspires/
Two decades is a long time to live in the harsh environment of outer space (respect to the fast-approaching 40-year-old twin Voyager spacecraft). Launched in 1997, Cassini logged a lot of milestones over the years.
Explore the Cassini Timeline: saturn.jpl.nasa.gov/the-journey/timeline/
And, you can read it. Week after week going back to 1997, Cassini's adventures, discoveries and status have been chronicled in the mission's weekly significant events report.
Read It: https://saturn.jpl.nasa.gov/news/?topic=121
Cassini was the prototype for NASA's Eyes on the Solar System 3-D visualization software, so it's fitting the latest Cassini module in the free, downloadable software is the most detailed, elaborate visualization of any mission to date.
Fly the Mission - Start to Finish: http://eyes.nasa.gov/cassini
In addition to all the new information from 22 orbits in unexplored space, Cassini's engineers reprogrammed the spacecraft to send back details about Saturn's atmosphere to the very last second before the giant planet swallows her up on Sept. 15, 2017.
More on the Grand Finale: saturn.jpl.nasa.gov/grandfinale
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. Powered by the Sun
Fifty-nine years ago, Vanguard 1 launched to demonstrate a new spacecraft technology – solar power. We’ve been going farther and for longer ever since.
+More on Vanguard 1
2. Mapping Mercury
A big week in history for exploration of the innermost planet. On March 16, 1975, our Mariner 10 made its third and final flyby of Mercury. One day and 36 years later, MESSENGER became the first spacecraft to orbit Mercury. Next up: ESA’s BepiColumbo, undergoing testing now, is set to launch for Mercury in 2018.
+Missions to Mercury
3. Return to Venus
U.S. and Russian scientists are discussing a planned revival of the successful Venera program that revealed much about Venus in the 1960s, 70s and 80s. Meanwhile, Japan’s Akatsuki orbiter continues to study our sister planet.
+More on Venera-D
4. Rocket Power
Back on Earth 91 years ago (March 16, 1926), inventor and dreamer Robet Goddard changed the world forever with the first test of a liquid-fueled rocket. We’ve been going farther and faster ever since.
+More on Goddard
5. Moon Watch
Our Lunar Reconnaissance Orbiter (LRO) has been sending a steady stream of high-resolution images back to Earth for more than seven years.
+More on LRO
6. Busy Mars
There are currently five orbiters (Mars Reconnaissance Orbiter, Mars Odyssey, MAVEN, ESA’s Mars Express and India’s Mars Orbiter Mission) and two rovers (Curiosity and Opportunity) exploring Mars, making it second only to Earth in the number of robotic spacecraft studying its secrets.
+Meet the Mars Fleet
7. Vote for Jupiter
Polls close today (March 20) so vote not to point a real spacecraft camera at Jupiter during the mission’s 5th perijove pass.
+Vote now
8. Science to the Last Second
In a little less than six months, our Cassini orbiter will plunge into Saturn as a spectacular finale to its 19-year mission – but not before it embarks on a completely new mission into unexplored space between Saturn and its mighty rings.
+More on Cassini’s Grand Finale
9. By George?
Happy belated birthday to Uranus, discovered on March 13, 1781 by William Herschel. The English astronomer wanted to name his discovery – the first planet discovered in recorded history – “Georgium Sidus” after England’s King George III. But he was overruled, and astronomer stuck with traditional mythological names – creating an opportunity for 263 years of student jokes at the expense of the ice giant planet’s name.
+More on Uranus
10. Go Farther
The round trip light time from Voyager 1 to Earth is more than 38 hours. Voyager 1 is almost 13 billion miles from our home planet.
+More on Voyager
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Pi is the ratio of a circle’s circumference to its diameter. It is also an irrational number, meaning its decimal representation never ends and it never repeats. Pi has been calculated to more than one trillion digits,
March 14 marks the yearly celebration of the mathematical constant pi. More than just a number for mathematicians, pi has all sorts of applications in the real world, including on our missions. And as a holiday that encourages more than a little creativity – whether it’s making pi-themed pies or reciting from memory as many of the never-ending decimals of pi as possible (the record is 70,030 digits).
While 3.14 is often a precise enough approximation, hence the celebration occurring on March 14, or 3/14 (when written in standard U.S. month/day format), the first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.
Below are some ways scientists and engineers used pi.
Propulsion engineers use pi to determine the volume and surface area of propellant tanks. It’s how they size tanks and determine liquid propellant volume to keep spacecraft going and making new discoveries.
A technique called pi transfer uses the gravity of Titan’s moon, Titan, to alter the orbit of the Cassini spacecraft so it can obtain different perspectives of the ringed planet.
Using pi and the asteroid’s mass, scientists can calculate the density of an asteroid and learn what it’s made of--ice, iron, rock, etc.
knowing the circumference, diameter and surface area of a crater can tell scientists a lot about the asteroid or meteor that may have carved it out.
Exoplanets are planets that orbit suns other than our own and scientists use pi to search for them. The first step is determining how much the light curve of a planet’s sun dims when a suspected planets passes in front of it.
Want to learn more about Pi? Visit us on Pinterest at: https://www.pinterest.com/nasa/pi-day/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
During nearly two decades in space, Cassini has been a source of inspiration to many. Has Cassini inspired you? Upload your artwork, photos, poems or songs to the social media platform of your choice, such as Instagram, YouTube, Facebook, Twitter or others. Tag it #CassiniInspires. Or, send it directly to: cassinimission@jpl.nasa.gov. We'll highlight some of the creations on this page. See examples and details at: saturn.jpl.nasa.gov/mission/cassiniinspires/
Our Dawn mission has found evidence for organic material on Ceres, a dwarf planet and the largest body in the main asteroid belt between Mars and Jupiter. Learn more: solarsystem.nasa.gov/news/2017/02/17/dawn-discovers-evidence-for-organic-material-on-ceres
A new device called the vortex coronagraph was recently installed inside NIRC2 (Near Infrared Camera 2) at the W.M. Keck Observatory in Hawaii and has delivered its first images, showing a ring of planet-forming dust around a star, and separately, a cool, star-like body, called a brown dwarf, lying near its companion star.
A puzzling sensor reading transformed our Cassini Saturn mission and created a new target in the search for habitable worlds beyond Earth, when on Feb. 17, 2005, Cassini made the first-ever close pass over Saturn’s moon. Since our two Voyager spacecraft made their distant flybys of Enceladus about 20 years prior, scientists had anticipated the little moon would be an interesting place to visit. Enceladus is bright white -- the most reflective object in the solar system, in fact -- and it orbits in the middle of a faint ring of dust-sized ice particles known as Saturn’s E ring. Scientists speculated ice dust was being kicked off its surface somehow. But they presumed it would be, essentially, a dead, airless ball of ice.
What Cassini saw didn't look like a frozen, airless body. Instead, it looked something like a comet that was actively emitting gas. The magnetometer detected that Saturn’s magnetic field, which envelops Enceladus, was perturbed above the moon's south pole in a way that didn't make sense for an inactive world. Could it be that the moon was actively replenishing gases it was breathing into space? Watch the video.
Our planet's southernmost active volcano reaches 12,448 feet (3,794 meters) above Ross Island in Antarctica. It's a good stand-in for a frozen alien world, the kind we want to send robots to someday. Learn more: solarsystem.nasa.gov/news/2017/02/13/descent-into-a-frozen-underworld
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Cassini spacecraft is blazingly fast. How fast? Well, that's all relative. Learn about the need for speed in space navigation.
The wavemaker moon, Daphnis, is featured in this view, taken as our Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on earlier this month. This is the closest view of the small moon obtained to date.
The European Space Agency’s tracking antennas at New Norcia, Western Australia, and Malargüe, Argentina, are helping with crucial observations during Cassini's last months in orbit, dubbed the 'Grand Finale.'
This image of a crescent Jupiter and the iconic Great Red Spot was created by a citizen scientist Roman Tkachenko using data from Juno spacecraft's onboard camera. The images also bear witness a series of storms shaped like white ovals, known informally as the "string of pearls."
Get a robot's-eye-view of the "Mars Yard," a terrain simulation area at the Jet Propulsion Laboratory where rover hardware and software are tested before being sent to the Red Planet. Ride alongside, atop and below the Scarecrow test mobility double for the Curiosity and Mars 2020 rovers.
Watch the video: www.youtube.com/watch Learn more about Scarecrow: http://mars.jpl.nasa.gov/news/2014/scarecrow-rover-goes-off-roading-in-dumont-dunes
Discover the full list of 10 things to know about our solar system this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The powerful HiRISE camera on the Mars Reconnaissance Orbiter took this incredible image of our home and moon. The image combines two separate exposures taken on Nov. 20, 2016.
+ See more
We’ve selected two new missions to explore the early solar system. Lucy, a robotic spacecraft scheduled to launch in October 2021, is slated to arrive at its first destination, a main belt asteroid, in 2025. From 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter's gravity in two swarms that share the planet's orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun.
+Learn more
Psyche, targeted to launch in October 2023, will explore one of the most intriguing targets in the main asteroid belt--a giant metal asteroid, known as 16 Psyche. The asteroid is about 130 miles (210 kilometers) in diameter and thought to be comprised mostly of iron and nickel, similar to Earth's core.
+ Details
Cassini took so many jaw-dropping photos last year, how could anyone choose just 10? Well, the Cassini team didn't. Here are 17 amazing photos from Saturn and its moons last year.
Impact craters have exposed the subsurface materials on the steep slopes of Mars. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image from our Mars Reconnaissance Orbiter, representing different rock types.
+ Learn more
Even though our New Horizons mission flew by Pluto in 2015, the scientific discoveries keep coming. Using a model similar to what meteorologists use to forecast weather and a computer simulation of the physics of evaporating ices, scientists have found evidence of snow and ice features that, until now, had only been seen on Earth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.
+ History of the Deep Space Network
The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.
Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.
+ Learn more
Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.
+ 2017 Solar Eclipse Toolkit
Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The second of three fall supermoons occurred on November 14 and the final one is December. What are supermoons? Since the moon’s orbit is elliptical, one side (perigee) is about 30,000 miles closer to Earth than the other (apogee). The word syzygy, in addition to being useful in word games, is the scientific name for when the Earth, sun, and moon line up as the moon orbits Earth. When perigee-syzygy of the Earth-moon-sun system occurs and the moon is on the opposite side of the Earth from the sun, we get a perigee moon or more commonly, a supermoon!
+ Learn more
When Dawn arrived at Ceres in March 2015, it became the first spacecraft to reach a dwarf planet Meet the Dawn mission’s chief engineer Dr. Marc Rayman and read his insightful blogs about the mission.
+ Latest Blog
+ All Mission Managers Blogs
On its penultimate close flyby of Saturn’s largest moon Titan, Cassini will use its radio science instrument to scan the great seas of methane near the moon’s North Pole. Titan’s three large northern seas, Punga Mare, Ligeia Mare and Kraken Mare, are each hundreds of miles across, but imaging cameras can’t see them very well because the moon’s surface is veiled by a thick haze. Radio signals, however, can penetrate the moon’s atmosphere, and Cassini has an instrument that uses radio signals to reveal Titan's dramatic landscapes.
+ See a map of Titan’s methane seas
Have you ever seen the International Space Station fly over your town? Do you want to?
+ Here's how and where and when to look
Learning more about the science of light and human vision will help us understand the value and fragility of natural lightscapes. During the day, the surface of the planet is bathed in light from the sun. The energy in sunlight drives weather, the water cycle, and ecosystems. But at night, in the absence of bright light, our atmosphere turns transparent and allows us to see beyond our planet into the vastness of the cosmos.
+ More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Through November 3, catch glimpses of a gibbous Venus, a crescent moon and ringed Saturn in the southwest sky just after sunset.
Wake up before sunrise every day this month to see Jupiter just above Spica, the brightest star in the constellation Virgo, shining in the east-southeast sky.
Just before dawn on November 23-24, see the waning crescent moon just above Jupiter.
November is a great time to see the constellation Ceres as it glides past Cetus, the Whale and you will be able to see the dwarf planet move relative to the background stars, but you’ll need a telescope for this one.
This month, just like last month, there will be three meteor showers--the Northern Tuarids, the Leonids and the November Orionids.
Watch the full November “What’s Up" video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The fifth International Cosmic Day will take place on Nov. 2. This event will bring students, teachers and scientists together to talk and learn about cosmic rays, energetic particles from deep space. Participants will learn more about cosmic rays, and can also carry out their own measurements and get in contact with groups all over the world to compare and discuss their results.
+ Join in
The number of near-Earth asteroids (NEAs) discovered now tops 15,000, with an average of 30 added each week. "While no known NEA currently poses a risk of impact with Earth over the next 100 years," says NASA Planetary Defense Officer Lindley Johnson. "We've found mostly the larger asteroids...we have a lot more of the smaller, but still potentially hazardous ones, to find."
+ Find out how we keep watch
The moon wasn't always so lucky when it came to avoiding impacts. New results from our Gravity Recovery and Interior Laboratory (GRAIL) mission are providing insights into the huge impacts that dominated the early history of Earth's moon--and other solid worlds like Earth and Mars.
+ See more
Our Cassini spacecraft regularly returns spectacular images from Saturn. What you may not realize is that even before they've been processed by Cassini imaging specialists, these pictures are published online in raw, unprocessed form, almost the moment they come down to Earth.
+ See for yourself
On Oct. 30, 2016, the Solar Dynamics Observatory, or SDO, experienced a partial solar eclipse in space when it caught the moon passing in front of the sun. The lunar transit lasted an hour, with the moon covering about 59 percent of the sun at the peak of its journey across the face of the sun. The moon's shadow occasionally obstructs SDO's otherwise constant view of the sun. The shadow's edge is sharp and distinct, since the moon has no atmosphere that would distort sunlight.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. What a Long, Strange—and Revealing—Trip It's Been
As the Cassini mission builds toward its climactic "Grand Finale," we’re taking a look back at the epic story of its journey among Saturn's mini-solar system of rings and moons.
+ Traverse the timeline
2. Our Very Own Moon
Unlike Saturn, Earth has only one moon. Let’s celebrate it! International Observe the Moon Night (InOMN) is a worldwide, public celebration of lunar science and exploration held annually. On Oct. 8, everyone on Earth is invited to observe and learn about the moon together, and to celebrate the cultural and personal connections we all have with it.
+ Join in
3. What's Up, October?
Even more about Earth’s moon is the subject of this month's video guide for sky watchers and includes a look at the moon’s phases and when to observe them. Also featured are a guide to upcoming meteor showers and tips on how to catch a glimpse of Saturn.
+ Take a look
4. Nine Lives
Dawn's discoveries continue, even as the asteroid belt mission marks nine years in space. "For such an overachiever," writes Dawn's top scientist, "it's fitting that now, on its ninth anniversary, the spacecraft is engaged in activities entirely unimagined on its eighth."
+ Learn more
5. The Incredible Shrinking Mercury
It's small, it's hot, and it's shrinking. Research funded by us suggests that Mercury is contracting even today. This means we now know that Mercury joins Earth as a tectonically active planet.
+ Get the small details
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
After more than 12 years at Saturn, our Cassini mission has entered the final year of its epic voyage to the giant planet and its family of moons. But the journey isn't over. The upcoming months will be like a whole new mission, with lots of new science and a truly thrilling ride in the unexplored space near the rings. Later this year, the spacecraft will fly repeatedly just outside the rings, capturing the closest views ever. Then, it will actually orbit inside the gap between the rings and the planet's cloud tops.
Get details on Cassini’s final mission
The von Kármán Lecture Series: 2016
As the New Horizon’s mission headed to Pluto, our Chandra X-Ray Observatory made the first detection of the planet in X-rays. Chandra’s observations offer new insight into the space environment surrounding the largest and best-known object in the solar system’s outermost regions.
See Pluto’s X-Ray
When the cameras on our approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto's largest moon, Charon, mission scientists knew two things: they'd never seen anything like it before, and they couldn't wait to get the story behind it. After analyzing the images and other data that New Horizons has sent back from its July 2015 flight through the Pluto system, scientists think they've solved the mystery. Charon's polar coloring comes from Pluto itself—as methane gas that escapes from Pluto's atmosphere and becomes trapped by the moon's gravity and freezes to the cold, icy surface at Charon's pole.
Get the details
The famed red-rock deserts of the American Southwest and recent images of Mars bear a striking similarity. New color images returned by our Curiosity Mars rover reveal the layered geologic past of the Red Planet in stunning detail.
More images
Our Hubble Space Telescope recently observed a comet breaking apart. In a series of images taken over a three-day span in January 2016, Hubble captured images of 25 building-size blocks made of a mixture of ice and dust drifting away from the comet. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental U.S.
Learn more
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. NASA-Funded Research
It’s all just a click way with the launch of a new public access site, which reflects our ongoing commitment to provide public access to science data.
Start Exploring!
2. Red Planet Reconnaissance
One of the top places in our solar system to look for signs of past or current life is Mars. Through our robotic missions, we have been on and around Mars for 40 years. These orbiters, landers and rovers are paving the way for human exploration.
Meet the Mars robots
3. Three Moons and a Planet that Could Have Alien Life
In a presentation at TED Talks Live, our director of planetary science, Jim Green, discusses the best places to look for alien life in our solar system.
Watch the talk
4. Setting Free a Dragon
Tune in to NASA TV on Friday, Aug. 26 at 5:45 a.m. EDT for coverage of the release of the SpaceX Dragon CRS-9 cargo ship from the International Space Station.
Watch live
5. Anniversary Ring(s)
Aug. 26 marks 35 years since Voyager probe flew by Saturn, delighting scientists with rich data and images. Today, thanks to our Cassini spacecraft, we know much more about the ringed planet.
Learn more about Cassini’s mission to Saturn
Learn more about Voyager 2
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What’s up for August? How to spot Mercury, Venus, Mars, Jupiter and Saturn, as well as the and the annual Perseid meteor shower.
Here are some highlights in this month’s nighttime skies as picked by astronomer Jane Houston Jones from our Jet Propulsion Laboratory.
Spot Venus, Mercury and Jupiter and the moon low on the western horizon about 45 minutes after sunset from August 4 through 7. On August 11, look in the south-southwest sky for a second planetary dance as Mars and Saturn are high and easy to see and they are joined by the moon.
The famous and reliably active Perseid meteor shower peaks in the morning hours of August 12. The moon, which paired up so nicely with Mars and Saturn on the 11, is bright enough to blot out some of the meteors, but lucky for you it sets about 1 a.m. on the morning of the 12, just at the peak time for the best Perseid viewing.
But wait, there are more planets, dwarf planets and an asteroid visible this month! Uranus and Neptune and dwarf planet Ceres are visible before dawn in the southern sky. Uranus is visible through binoculars but Neptune and Ceres require a telescope.
Watch the full August “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What's Up for June? Saturn at its best! Plus, good views of Mars, Jupiter and Jupiter's moons continue from dusk to dawn.
You don't have to stay up late to see Jupiter, Mars and Saturn this month, because they're all visible soon after sunset. Jupiter is the brightest of the three, visible in the western sky all evening.
The four Galilean moons are easily visible in binoculars or telescopes. If you think you're seeing 5 moons on June 10th, you're not. One of them is a distant star in the constellation Leo.
For telescope viewers, the time near Mars' closest approach to Earth, May 30th this year, is the best time to try to see the two moons of Mars: Phobos and Deimos. It takes patience, very steady skies and good charts! Mars is still large and bright in early June, but it fades as speedy Earth, in its shorter orbit around the sun, passes it.
Saturn has been close to Mars recently. This month Saturn reaches opposition, when Saturn, Earth and the sun are in a straight line with Earth in the middle, providing the best and closest views of the ringed beauty and several of its moons. You'll be able to make out cloud bands on Saturn, in delicate shades of cream and butterscotch. They're fainter than the bands of Jupiter. Through a telescope you'll see Saturn's rings tilted about as wide as they get: 26 degrees.
You'll also have a ring-side view of the Cassini division, discovered by Giovanni Domenico Cassini, namesake of our Cassini spacecraft, orbiting Saturn since 2004 and continuing through September 2017. When you look at Saturn through a telescope, you can't help but see several of its 4 brightest moons, and maybe more. If you just see one, that's Titan, 50% larger than our own moon. A telescope can also reveal more moons, like Saturn's two-colored moon Iapetus. It takes 3 months to orbit Saturn, and it's fairly easy to see.
There's a bright comet visible this month, Comet PanSTARRS. It's best seen from the southern hemisphere, but it's also visible from the U.S. low in the morning sky. Comet PanSTARRS can be seen through a telescope near the beautiful Helix Nebula on June 4, but it is visible all month.
Watch the full June “What’s Up” video for more: https://youtu.be/M7RtIa9zBYA
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Earlier this month, Mars was at opposition, which is the point in their orbits when Mars, Earth and the sun all line up, making for good conditions to view the Red Planet from Earth.
Now, it’s Saturn’s turn. The ringed planet will be at opposition on June 3, and this week is a great time to see it — both in the sky as well as up close, thanks to our spacecraft. Here are a few things to know about Saturn exploration this week:
1. Group Portrait
Thanks to their current orbital positions, our sun-observing spacecraft STEREO-A was recently able to capture the sun, Saturn, Mars and Earth in one image. Take a closer look HERE. Discover more about the STEREO mission HERE.
2. Likable, Lick-able Saturn
Saturn’s handsome visage is featured among the new stamps that the US Postal Service is releasing this week to highlight our adventures in planetary exploration.
3. Do You Even Know Saturn?
Yes, yes, it’s the one with the rings. But did you know Saturn has winds that can exceed 1000 miles per hour? Or that its magnetic field is hundreds of times as powerful as the Earth’s? Or that its day is just 10 hours long? How well do you really know the sixth planet?
4. Picking Up Signals
One thing you many not know about the planet is that it’s loud, at least if you listen to its radio signals. When our robotic Cassini spacecraft first approached Saturn, it detected the powerful fields that surround it. Engineers turned those signals into beautiful, eerie sounds. Listen to them HERE.
5. Not All Who Wander Are Lost
The Cassini mission’s explorations of the Saturn system are very much ongoing. In the next few days, the spacecraft will be touring many locations, including the giant moon Titan, Saturn’s turbulent clouds, the tiny moon Albiorix and more! Get the full itinerary HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are five things you need to know this week:
1. The Lure of the Rings
Scientists and stargazers alike can’t resist the call of Saturn’s rings, or of its moon Titan. Both have been under close scrutiny by the Cassini spacecraft lately, and there are striking new pictures to prove it. Check out the latest images HERE.
2. A New Moon Rises
The Lunar Reconnaissance Orbiter has captured dramatic landscapes on the moon for more than six years. “A New Moon Rises,” now on display at the Smithsonian National Air and Space Museum in Washington, DC, showcases those images ranging from Apollo landing sites to mountains that rise out of the darkness of the lunar poles. See an online version of the exhibit HERE.
3. Around the (Giant) World in (Just Under) 88 Days
The Juno mission is closing in on Jupiter. On July 4, the spacecraft enters orbit around the king of planets. Learn more about Juno HERE.
4. Spiders and Volcanoes and Glaciers, Oh My
The more data that New Horizons spacecraft sends down about Pluto and its moons, the more there is to fascinate explorers, from spider-shaped canyons to signs of glacial flow. Take a peek at the new finds on Pluto HERE.
5. World of Wonders
Hexagonal craters, mysterious mountains, eye-catching bright patches — the dwarf planet Ceres is proving to be an intriguing place. The Dawn mission is looking for clues to how it works. See the latest from Ceres HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The solar system is vast, and exploring it requires not one expedition, but many. From the sun to the Earth to the depths of space beyond Pluto, an entire fleet of spacecraft is pushing back the frontiers of knowledge. Scientists and engineers around the world work together on dozens of missions, and the results of their work unfold on a daily basis. During any given week, astronauts and robotic spacecraft return thousands of pictures and other data from Earth orbit and from half a dozen other worlds.
The result? It’s nothing short of a visual and intellectual feast. For example, all of the following images were obtained over the course of one week during January this year.
The same missions that took these pictures are still at work – they may be photographing Saturn or transmitting a report from Mars as you read this.
1. The Sun
From its clear vantage point in Earth orbit, our Solar Dynamics Observatory (SDO) observes our nearby star almost continuously. This image shows activity on the sun’s surface on Jan. 18. You can also get similar pictures from SDO daily!
2. The Earth from Afar
The DSCOVR satellite orbits the Earth at a distance of nearly a million miles (1.5 million kilometers). It’s Earth Polychromatic Imaging Camera (EPIC) keeps a steady watch on the home planet. This is how the world turned on Jan. 20. Get the latest daily images from EPIC HERE.
3. Mars from Above
The team that manages the Mars Reconnaissance Orbiter (MRO) recently celebrated a decade of observing the Red Planet. MRO took this detailed look at dunes and rocky buttes in Danielson Crater on Jan. 24. It was 3:06 p.m., local Mars time. On the right stide of the image, dust devils have left tracks in the sand.
4. Comet 67/P
The European Space Agency’s Rosetta probe caught this look at the surface of Comet 67/P from a distance of just 46 miles (75 kilometers) on Jan. 23.
5. Saturn
On the same day (Jan. 23), our Cassini spacecraft continued its odyssey of nearly two decades in space, bringing us this look at the sixth planet. See the latest images from Cassini HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things to know this week:
1. The New New Horizons
Seven months after the Pluto flyby, information and discoveries continue to flow from the New Horizons mission, as the spacecraft transmits more and more data to scientists on Earth.
2. A Longlasting Dawn
The Dawn orbiter is in good health as it carries out the ongoing reconnaissance of the dwarf planet Ceres, which is revealing some spectacular and mysterious landscapes.
3. Storm Watch: Saturn
This week the Cassini spacecraft will be watching for storms in Saturn’s turbulent atmosphere. On March 6, it will spend about 14 hours acquiring a movie of the narrow, braided F ring. Check out some past photos of Saturnian storms HERE.
4. The Next Flight to Mars Departs Soon
The ExoMars 2016 mission, a joint endeavor between the European Space Agency and the Russian space agency Roscosmos, is set to lift off in March. The 2016 mission consists of the Trace Gas Orbiter and the Schiaparelli Entry, Descent and Landing Demonstrator Module. We’re supplying some of the technology that will fly aboard the orbiter. In 2018, the ExoMars rover is slated to follow.
5. Early Encounter with a Comet
As we continue to marvel at the latest images from Rosetta, this week is a good time to remember the 30th anniversary of the Vega 1 Comet Halley flyby. This Russian spacecraft dropped off a balloon probe at Venus before continuing on to the comet, which is photographed and examined at close range by flying through its coma.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things you should know this week:
1. From Pluto, with Love
Last Valentine’s Day, no one had even seen Pluto’s most famous feature, the heart-shaped Sputnik Planum. These days, the New Horizons spacecraft is sending more and more pictures back to Earth from its Pluto flyby last July. We received new ones almost on a weekly basis. For the latest love from the outer solar system, go HERE.
2. Saturn’s Rings: More (and Less) than Meets the Eye
The Cassini spacecraft is executing a series of maneuvers to raise its orbit above the plane of Saturn’s famous rings. This will offer some breathtaking views that you won’t want to miss. Meanwhile, Cassini scientists are learning surprising things, such as the fact that the most opaque sections of the rings are not necessarily the thickest.
3. Stay on Target
The Juno spacecraft recently completed a course correction maneuver to fine-tune its approach to Jupiter. After years of flight and millions of miles crossed, arrival time is now set to the minute: July 4th at 11:18 p.m. EST. See why we’re going to jupiter HERE.
4. The Many Lives of “Planet X”
The announcement of a potential new planet beyond Neptune creates an opportunity to look back at the ongoing search for new worlds in the unmapped reaches of our own solar system. Review what we’ve found so far, and what else might be out there HERE.
5. Answering the Call of Europa
There are a few places more intriguing that Jupiter’s icy moon, Europa, home to an underground ocean with all the ingredients necessary for potential life. We’re undertaking a new mission to investigate, and the project’s top manager and scientist will be giving a live lecture to detail their plans. Join Barry Goldstein and Bob Pappalardo on Feb. 11 at 10 p.m. EST for a live lecture series on Ustream.
Want to learn more? Read our full list of the 10 things to know this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month you can catch a rare sight in the pre-dawn sky: five planets at once! If you look to the south (or to the north if you’re in the southern hemisphere) between about 5:30 and 6 a.m. local time you’ll see Mercury, Venus, Saturn, Mars and Jupiter lined up like jewels on a necklace. They’re beautiful in the sky, and even more fascinating when you look closely.
This week we’re taking a tour of the planets with recent information about each:
1. Artistic License
Craters on Mercury are named for writers and artists of all kinds. There are Tolstoy, Thoreau and Tolkien craters, for example, as well as those that bear the names of the Brontës, photographer Dorothea Lange and dancer Margot Fonteyn. See the complete roster of crater names HERE.
2. Lifting the Veil of Venus
A thick covering of clouds made Venus a mystery for most of human history. In recent decades, though, a fleet of robotic spacecraft has helped us peer past the veil and learn more about this world that is so like the Earth in some ways — and in some ways it’s near opposite.
3. Curious?
Have you ever wanted to drive the Mars Curiosity rover? You can take the controls using our Experience Curiosity simulation. Command a virtual rover as you explore the terrain in Gale Crater, all using real data and images from Mars. Try it out HERE.
4. Now That’s a Super Storm
Winter weather often makes headlines on Earth — but on Jupiter there’s a storm large enough to swallow our entire planet several times over. It’s been raging for at least three hundred years! Learn about the Great Red Spot HERE.
5. Ring Watcher
This week, the Cassini spacecraft will be making high-resolution observations of Saturn’s entrancing rings. This is a simulated look at Saturn, along with actual photos of the rings from the Cassini mission.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Can you guess the subject of each of these pictures? How many will you get right? Test your friends and family to see who knows their space photos the best.
1. Mars. You might be surprised, but this image taken by our Mars Reconnaissance Orbiter is of a light-toned deposit on the Martian surface. Some shapes in the terrain suggest erosion by a fluid moving north to south.
2. Earth. This image taken by our Earth Observing-1 satellite shows Lake Frome in central Australia. In this image, the salt lake appears bone-dry, filled with off-white sediment. This area of Australia receives 149 to 216 millimeters of rainfall a year on average, and the basins pass most of their time as saltpans.
3. Mercury. Our MESSENGER spacecraft captured this image of Mercury during a fly by in October 2008. It shows previously uncharted regions of the planet that have large craters with an internal smoothness similar to Earth’s own moon. It is thought that these craters were to have been flooded by lava flows that are old but not as old as the surrounding more highly cratered surface.
4. Earth. Surprisingly, this image take from the International Space Station shows the western half of the Arabian peninsula in Saudi Arabia. It not only contains large expanses of sand and gravel, but extensive lava fields known as haraat.
5. Saturn. Although this pattern of waves is similar to those seen on Jupiter, this is actually a picture of Saturn. The pattern of an iconic surfer’s wave, has been observed in many places all over the universe, including at the edges of Earth’s magnetic environment.
6. Mars. This image was taken by our Mars Reconnaissance Orbiter and shows dunes of sand-sized materials that have been trapped on the floors of many Martian craters. The dunes are linear, thought to be due to shifting wind directions.
7. Left: Europa. Right: Frying Pan. Europa is one of Jupiter’s moons, and is about the same size as Earth’s moon.
8. Ceres. This image taken by our Dawn spacecraft shows an intriguing mountain on dwarf planet Ceres protruding from a relatively smooth area.
9. Earth. This image of the Bazman volcano is located in a remote region of souther Iran. While the volcano has the classic cone shape of a stratovolcano, it is also heavily dissected by channels that extend downwards from the summit.
10. Earth. This image of the Great Sandy Desert in northwest Australia shows a variety of dune forms across the region. The photo was taken by the Expedition 35 crew from the International Space Station.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. Make a Wish
The annual Leonids meteor shower is not known for a high number of "shooting stars" (expect as many as 15 an hour), but they're usually bright and colorful. They're fast, too: Leonids travel at speeds of 71 km (44 miles) per second, which makes them some of the fastest. This year the Leonids shower will peak around midnight on Nov. 17-18. The crescent moon will set before midnight, leaving dark skies for watching. Get more viewing tips HERE.
2. Back to the Beginning
Our Dawn mission to the dwarf planet Ceres is really a journey to the beginning of the solar system, since Ceres acts as a kind of time capsule from the formation of the asteroid belt. If you'll be in the Washington DC area on Nov. 19, you can catch a presentation by Lucy McFadden, a co-investigator on the Dawn mission, who will discuss what we've discovered so far at this tiny but captivating world. Find out how to attend HERE.
3. Keep Your Eye on This Spot
The Juno spacecraft is on target for a July 2016 arrival at the giant planet Jupiter. But right now, your help is needed. Members of the Juno team are calling all amateur astronomers to upload their telescopic images and data of Jupiter. This will help the team plan their observations. Join in HERE.
4. The Ice Volcanoes of Pluto
The more data from July's Pluto flyby that comes down from the New Horizons spacecraft, the more interesting Pluto becomes. The latest finding? Possible ice volcanoes. Using images of Pluto's surface to make 3-D topographic maps, scientists discovered that some mountains on Pluto, such as the informally named Piccard Mons and Wright Mons, had structures that suggested they could be cryovolcanoes that may have been active in the recent geological past.
5. Hidden Storm
Cameras aboard the Cassini spacecraft have been tracking an impressive cloud hovering over the south pole of Saturn's moon Titan. But that cloud has turned out to be just the tip of the iceberg. A much more massive ice cloud system has been found lower in the stratosphere, peaking at an altitude of about 124 miles (200 kilometers).
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com