Did you know that our planet is surrounded by giant, donut-shaped clouds of radiation?
Here's what you need to know.
The Van Allen radiation belts exist because fast-moving charged particles get trapped inside Earth's natural magnetic field, forming two concentric donut-shaped clouds of radiation. Other planets with global magnetic fields, like Jupiter, also have radiation belts.
Earth's radiation belts were first identified in 1958 by Explorer 1, the first U.S. satellite. The inner belt, composed predominantly of protons, and the outer belt, mostly electrons, would come to be named the Van Allen Belts, after James Van Allen, the scientist who led the charge designing the instruments and studying the radiation data from Explorer 1.
In 2012, we launched the twin Van Allen Probes to study the radiation belts. Over the past six years, these spacecraft have orbited in and out of the belts, providing brand-new data about how the radiation belts shift and change in response to solar activity and other factors.
Shortly after launch, the Van Allen Probes detected a previously-unknown third radiation belt, created by a bout of strong solar activity. All the extra energy directed towards Earth meant that some particles trapped in our planet's magnetic field were swept out into the usually relatively empty region between the two Van Allen Belts, creating an additional radiation belt.
Originally designed for a two-year mission, the Van Allen Probes have spent more than six years collecting data in the harsh radiation environment of the Van Allen Belts. In spring 2019, we're changing their orbit to bring the perigee — the part of the orbit where the spacecraft are closest to Earth — about 190 miles lower. This ensures that the spacecraft will eventually burn up in Earth's atmosphere, instead of orbiting forever and becoming space junk.
Because the Van Allen Probes have proven to be so hardy, they'll continue collecting data throughout the final months of the mission until they run out of fuel. As they skim through the outer reaches of Earth's atmosphere, scientists and engineers will also learn more about how atmospheric oxygen can degrade satellite measurements — information that can help build better satellites in the future.
Keep up with the latest on the mission on Twitter, Facebook or nasa.gov/vanallenprobes.
Considered by many to be the father of science fiction, French novelist Jules Verne takes his readers on a “From the Earth to the Moon,” “Twenty Thousand Leagues Under the Sea” and “Around the World in Eighty Days.” In his honor, let’s take our own journey around the world, exploring seven far-flung ground stations and the communications networks they support. These ground stations downlink data from science and exploration missions, maintaining the critical link from space to ground.
Our Deep Space Network supports far-out missions like Voyager 1, a spacecraft that's now over 13 billion miles from Earth. To communicate that far, the Network uses antennas as large as 230 feet in diameter. The network has ground stations in Pasadena, California; Madrid, Spain; and this one in Canberra, Australia. The ground stations are strategically placed for maximum coverage of the night sky, ensuring that deep space missions can communicate their data back to Earth. Check out that lizard!
Our Space Network uses relay satellites in conjunction with ground stations to provide continuous communications coverage for satellites in low-Earth orbit like the International Space Station, enabling 24/7 connection with astronauts onboard. Spacecraft using the Space Network beam their data to the constellation of Tracking and Data Relay Satellites, which forward that data to the ground. This is a photo of a Space Network ground station in Guam, a U.S. territory. The spherical structures around the antennas are called “radomes” and protect the antennas from the tropical storms!
Optical communications uses lasers to provide missions with higher data rates than radio communications. Optical terminals also offer missions reduced size, weight and power requirements over comparable radio antennas. A smaller system leaves more room for science instruments, a weight reduction can mean a less expensive launch and reduced power allows batteries to last longer. This ground station in Haleakalā, Hawaii, will relay data to California through a groundbreaking optical communications satellite, the Laser Communications Relay Demonstration. The demonstration will show the power and promise of optical communications to support the next generation of science missions.
Antarctica may seem like an odd place for radio antennas, but McMurdo Ground Station is vitally important to our networks. In 2017, we used the McMurdo ground station to demonstrate a new technology called Disruption Tolerant Networking (DTN), sending a selfie from McMurdo to the space station through numerous DTN nodes. DTN protocols allow data to be stored at points along its route that do not have an open connection to the next intermediary, preventing data loss and improving data returns.
This Near Earth Network ground station in Santiago, Chile, might not be our only South American ground station for long. The Near Earth Network is considering Punta Arenas, Chile, as a possible location for Ka-band antennas, which would provide missions with higher data rates. The Near Earth Network is also experimenting with Ka-band arraying, which uses multiple smaller antennas to provide the same capabilities of a larger, Ka-band antenna. Ka-band services will greatly increase the amount of science data we can gather!
If the space station ever has communications trouble, we could communicate with our astronauts through emergency very high frequency (VHF) communications ground stations like this one in Wallops Island, Virginia. VHF offers voice-only, contingency communications for the station and the Soyuz spacecraft, which ferries astronauts to and from the station. We maintain two VHF stations strategically placed to maximize contact with the space station as it orbits above North America. International partners operate VHF stations that provide contacts as the station orbits above Asia and Europe. NASA’s segment of the VHF network recently underwent critical upgrades that improve the reliability and durability of the system.
This beautiful photo captures Near Earth Network antennas in Svalbard, Norway, beneath the glow of the Northern lights, a phenomenon that occurs when charged particles from the Sun interact with various gasses in Earth’s atmosphere. If one were to visit Iceland, one could see these same lights above Snæfellsjökull volcano, featured in Jules Verne’s “A Journey to the Center of the Earth” as the imaginary entrance to a subterranean world.
A lot has changed in the nearly two centuries since Jules Verne was born. Verne’s 1865 novel “From the Earth to the Moon” and its 1870 sequel “Around the Moon” imagine a giant cannon capable of launching three men into lunar orbit. These imaginary astronauts used opera glasses to survey the lunar surface before returning safely to Earth.
Such a story may seem ridiculous in an age where humanity has occupied space for decades and satellites explore distant worlds with increasing regularity, but Verne’s dreams of spaceflight were novel – if not revolutionary – at the time. This change in worldview reflects humanity’s inexorable technological progress and our mission at NASA to turn science fiction into science fact.
As the next generation of exploration commences, our ever-evolving communications capabilities rise to meet the demands of missions that dreamers like Verne could hardly imagine.
The seven ground stations featured here were just a taste of our communications infrastructure. To learn more about space communications, visit: https://www.nasa.gov/SCaN
For the second time in history, a human-made object has reached the space between the stars. Our Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.
Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.
Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.
Read more at https://go.nasa.gov/2QG2s16 or follow along with the mission @NASAVoyager on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.
To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!
Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.
So who are these companies that will get to ferry science instruments and new technologies to the Moon?
Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:
Pittsburg, PA
Littleton, CO
Cedar Park, TX
Houston, TX
Littleton, CO
Mojave, CA
Cape Canaveral, FL
Edison, NJ
Cambridge, MA
We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.
The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!
The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!
Join us on this exciting journey as we expand humanity’s presence beyond Earth.
Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov
Find out more about today’s announcement HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
There’s a whole universe of mysteries out there to put some fun—and maybe a touch of fright—into your All Hallows Eve festivities. Here are a few:
Mythical monsters of Earth have a tough time of it. Vampires don’t do sunlight. Werewolves must wait for a full Moon to howl. Now, thanks to powerful space telescopes, some careful looking and a lot of whimsy, NASA scientists have found suitable homes for the most terrifying Halloween monsters.
No costume. No problem. NASA Blueshift offers some handy tips on transforming yourself into a powerful space telescope before hitting the sidewalk to trick-or-treat.
At Halloween, engineers at NASA’s Jet Propulsion Laboratory craft dramatic creations that have as much in common with standard jack-o'-lanterns as paper airplanes do with NASA spacecraft. The unofficial pumpkin carving contest gives engineers a chance to flex their creative muscles and bond as a team. The rules are simple: no planning, carving or competing during work hours.
The results? See for yourself!
Can’t wait to see this year’s creations? Do it yourself!
Scientists think a large space rock that zipped past Earth on Halloween in 2015 was most likely a dead comet or an asteroid that, fittingly, bore an eerie resemblance to a skull.
"The object might be a dead comet, but in the (radar) images it appears to have donned a skull costume for its Halloween flyby," said NASA scientist Kelly Fast,
As with a lot of spooky things, the asteroid looked a lot less scary upon closer inspection.
Not to be outdone, the Sun—our star—has been known to put on a scary face.
In this October 2014 Solar Dynamic Observatory image, active regions on the Sun combined to look something like a jack-o-lantern’s face.
The active regions appear brighter because those are areas that emit more light and energy—markers of an intense and complex set of magnetic fields hovering in the Sun’s atmosphere, the corona. This image blends together two sets of wavelengths at 171 and 193 angstroms, typically colorized in gold and yellow, to create a particularly Halloween-like appearance.
Halloween held a special significance for NASA’s Cassini mission, which launched in October 1997. The team held its own elaborate pumpkin carving competitions for many years. The mission also shared whimsical Halloween greetingswith its home planet.
Cassini ended its extended mission at Saturn in 2017.
The brightest stars embedded in nebulae throughout our galaxy pour out a torrent of radiation that eats into vast clouds of hydrogen gas – the raw material for building new stars. This etching process sculpts a fantasy landscape where human imagination can see all kinds of shapes and figures. This nebula in the constellation of Cassiopeia has flowing veils of gas and dust that have earned it the nickname "Ghost Nebula."
Turns out the human mind—including space scientists and engineers among us—find spooky shapes in many places.
This infrared view of the Helix Nebula reminded astronomers of a zombie eyeball.
The Oct. 26 Earth Observatory’s Puzzler feature offers a spooky shape for your consideration. What is it and what does it look like? You tell us.
The trick-or-treat tradition is still—so far—pretty much confined to Earth. But thanks to the men and women who have been living aboard the International Space Station for more than 17 years, we have a preview of what a future space-based trick-or-treater’s Halloween candy haul would look like in microgravity.
Our education team offers a bunch more Halloween activities, including space-themed pumpkin stencils, costume tips and even some mysteries to solve like a scientist or engineer.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Icy Hearts: A heart-shaped calving front of a glacier in Greenland (left) and Pluto's frozen plains (right). Credits: NASA/Maria-Jose Viñas and NASA/APL/SwRI
From deep below the soil at Earth’s polar regions to Pluto’s frozen heart, ice exists all over the solar system...and beyond. From right here on our home planet to moons and planets millions of miles away, we’re exploring ice and watching how it changes. Here’s 10 things to know:
An Antarctic ice sheet. Credit: NASA
Ice sheets are massive expanses of ice that stay frozen from year to year and cover more than 6 million square miles. On Earth, ice sheets extend across most of Greenland and Antarctica. These two ice sheets contain more than 99 percent of the planet’s freshwater ice. However, our ice sheets are sensitive to the changing climate.
Data from our GRACE satellites show that the land ice sheets in both Antarctica and Greenland have been losing mass since at least 2002, and the speed at which they’re losing mass is accelerating.
Earth’s polar oceans are covered by stretches of ice that freezes and melts with the seasons and moves with the wind and ocean currents. During the autumn and winter, the sea ice grows until it reaches an annual maximum extent, and then melts back to an annual minimum at the end of summer. Sea ice plays a crucial role in regulating climate – it’s much more reflective than the dark ocean water, reflecting up to 70 percent of sunlight back into space; in contrast, the ocean reflects only about 7 percent of the sunlight that reaches it. Sea ice also acts like an insulating blanket on top of the polar oceans, keeping the polar wintertime oceans warm and the atmosphere cool.
Some Arctic sea ice has survived multiple years of summer melt, but our research indicates there’s less and less of this older ice each year. The maximum and minimum extents are shrinking, too. Summertime sea ice in the Arctic Ocean now routinely covers about 30-40 percent less area than it did in the late 1970s, when near-continuous satellite observations began. These changes in sea ice conditions enhance the rate of warming in the Arctic, already in progress as more sunlight is absorbed by the ocean and more heat is put into the atmosphere from the ocean, all of which may ultimately affect global weather patterns.
Snow extends the cryosphere from the poles and into more temperate regions.
Snow and ice cover most of Earth’s polar regions throughout the year, but the coverage at lower latitudes depends on the season and elevation. High-elevation landscapes such as the Tibetan Plateau and the Andes and Rocky Mountains maintain some snow cover almost year-round. In the Northern Hemisphere, snow cover is more variable and extensive than in the Southern Hemisphere.
Snow cover the most reflective surface on Earth and works like sea ice to help cool our climate. As it melts with the seasons, it provides drinking water to communities around the planet.
Tundra polygons on Alaska's North Slope. As permafrost thaws, this area is likely to be a source of atmospheric carbon before 2100. Credit: NASA/JPL-Caltech/Charles Miller
Permafrost is soil that stays frozen solid for at least two years in a row. It occurs in the Arctic, Antarctic and high in the mountains, even in some tropical latitudes. The Arctic’s frozen layer of soil can extend more than 200 feet below the surface. It acts like cold storage for dead organic matter – plants and animals.
In parts of the Arctic, permafrost is thawing, which makes the ground wobbly and unstable and can also release those organic materials from their icy storage. As the permafrost thaws, tiny microbes in the soil wake back up and begin digesting these newly accessible organic materials, releasing carbon dioxide and methane, two greenhouse gases, into the atmosphere.
Two campaigns, CARVE and ABoVE, study Arctic permafrost and its potential effects on the climate as it thaws.
Did you know glaciers are constantly moving? The masses of ice act like slow-motion rivers, flowing under their own weight. Glaciers are formed by falling snow that accumulates over time and the slow, steady creep of flowing ice. About 10 percent of land area on Earth is covered with glacial ice, in Greenland, Antarctica and high in mountain ranges; glaciers store much of the world's freshwater.
Our satellites and airplanes have a bird’s eye view of these glaciers and have watched the ice thin and their flows accelerate, dumping more freshwater ice into the ocean, raising sea level.
The nitrogen ice glaciers on Pluto appear to carry an intriguing cargo: numerous, isolated hills that may be fragments of water ice from Pluto's surrounding uplands. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto’s most famous feature – that heart! – is stone cold. First spotted by our New Horizons spacecraft in 2015, the heart’s western lobe, officially named Sputnik Planitia, is a deep basin containing three kinds of ices – frozen nitrogen, methane and carbon monoxide.
Models of Pluto’s temperatures show that, due the dwarf planet’s extreme tilt (119 degrees compared to Earth’s 23 degrees), over the course of its 248-year orbit, the latitudes near 30 degrees north and south are the coldest places – far colder than the poles. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia.
New Horizons also saw strange ice formations resembling giant knife blades. This “bladed terrain” contains structures as tall as skyscrapers and made almost entirely of methane ice, likely formed as erosion wore away their surfaces, leaving dramatic crests and sharp divides. Similar structures can be found in high-altitude snowfields along Earth’s equator, though on a very different scale.
This image, combining data from two instruments aboard our Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. Credit: NASA/JPL-Caltech/MSSS
Mars has bright polar caps of ice easily visible from telescopes on Earth. A seasonal cover of carbon dioxide ice and snow advances and retreats over the poles during the Martian year, much like snow cover on Earth.
This animation shows a side-by-side comparison of CO2 ice at the north (left) and south (right) Martian poles over the course of a typical year (two Earth years). This simulation isn't based on photos; instead, the data used to create it came from two infrared instruments capable of studying the poles even when they're in complete darkness. This data were collected by our Mars Reconnaissance Orbiter, and Mars Global Surveyor. Credit: NASA/JPL-Caltech
During summertime in the planet's north, the remaining northern polar cap is all water ice; the southern cap is water ice as well, but remains covered by a relatively thin layer of carbon dioxide ice even in summertime.
Scientists using radar data from our Mars Reconnaissance Orbiter found a record of the most recent Martian ice age in the planet's north polar ice cap. Research indicates a glacial period ended there about 400,000 years ago. Understanding seasonal ice behavior on Mars helps scientists refine models of the Red Planet's past and future climate.
Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Credit: NASA/JPL/Space Science Institute
Saturn’s rings and many of its moons are composed of mostly water ice – and one of its moons is actually creating a ring. Enceladus, an icy Saturnian moon, is covered in “tiger stripes.” These long cracks at Enceladus’ South Pole are venting its liquid ocean into space and creating a cloud of fine ice particles over the moon's South Pole. Those particles, in turn, form Saturn’s E ring, which spans from about 75,000 miles (120,000 kilometers) to about 260,000 miles (420,000 kilometers) above Saturn's equator. Our Cassini spacecraft discovered this venting process and took high-resolution images of the system.
Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL/Space Science Institute
View of a small region of the thin, disrupted, ice crust in the Conamara region of Jupiter's moon Europa showing the interplay of surface color with ice structures. Credit: NASA/JPL/University of Arizona
The icy surface of Jupiter’s moon Europa is crisscrossed by long fractures. During its flybys of Europa, our Galileo spacecraft observed icy domes and ridges, as well as disrupted terrain including crustal plates that are thought to have broken apart and "rafted" into new positions. An ocean with an estimated depth of 40 to 100 miles (60 to 150 kilometers) is believed to lie below that 10- to 15-mile-thick (15 to 25 km) shell of ice.
The rafts, strange pits and domes suggest that Europa’s surface ice could be slowly turning over due to heat from below. Our Europa Clipper mission, targeted to launch in 2022, will conduct detailed reconnaissance of Europa to see whether the icy moon could harbor conditions suitable for life.
The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by our Moon Mineralogy Mapper instrument. Credit: NASA
In the darkest and coldest parts of our Moon, scientists directly observed definitive evidence of water ice. These ice deposits are patchy and could be ancient. Most of the water ice lies inside the shadows of craters near the poles, where the warmest temperatures never reach above -250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.
A team of scientists used data from a our instrument on India’s Chandrayaan-1 spacecraft to identify specific signatures that definitively prove the water ice. The Moon Mineralogy Mapper not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.
With enough ice sitting at the surface – within the top few millimeters – water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.
With an estimated temperature of just 50K, OGLE-2005-BLG-390L b is the chilliest exoplanet yet discovered. Pictured here is an artist's concept. Credit: NASA
OGLE-2005-BLG-390Lb, the icy exoplanet otherwise known as Hoth, orbits a star more than 20,000 light years away and close to the center of our Milky Way galaxy. It’s locked in the deepest of deep freezes, with a surface temperature estimated at minus 364 degrees Fahrenheit (minus 220 Celsius)!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Earlier this month, the southeastern United States was struck by Hurricane Michael. After the category 4 storm made landfall on Oct. 10, 2018, Hurricane Michael proceeded to knock out power for at least 2.5 million customers across Florida, Georgia, North Carolina, and Virginia.
In this data visualization, you can clearly see where the lights were taken out in Panama City, Florida. A team of our scientists from Goddard Space Flight Center processed and corrected the raw data to filter out stray light from the Moon, fires, airglow, and any other sources that are not electric lights. They also removed atmosphere interference from dust, haze, and clouds.
In the visualization above, you can see a natural view of the night lights—and a step of the filtering process in an effort to clean up some of the cloud cover. The line through the middle is the path Hurricane Michael took.
Although the damage was severe, tens of thousands of electric power industry workers from all over the country—and even Canada—worked together to restore power to the affected areas. Most of the power was restored by Oct. 15, but some people still need to wait a little longer for the power grids to be rebuilt. Read more here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In 2020, we will launch our next Mars rover. It will journey more than 33 million miles to the Red Planet where it will land, explore and search for signs of ancient microbial life. But how do we pinpoint the perfect location to complete this science…when we’re a million miles away on Earth?
We utilize data sent to us by spacecraft on and orbiting Mars. That includes spacecraft that have recorded data in the past.
This week, hundreds of scientists and Mars enthusiasts are gathering to deliberate the four remaining options for where we’re going to land the Mars 2020 rover on the Red Planet.
The landing site for Mars 2020 is of great interest to the planetary community because, among the rover's new science gear for surface exploration, it carries a sample system that will collect rock and soil samples and set them aside in a "cache" on the surface of Mars. A future mission could potentially return these samples to Earth. The next Mars landing, after Mars 2020, could very well be a vehicle which would retrieve these Mars 2020 samples.
Here's an overview of the potential landing sites for our Mars 2020 rover…
This area was once warmed by volcanic activity. Underground heat sources made hot springs flow and surface ice melt. Microbes could have flourished here in liquid water that was in contact with minerals. The layered terrain there holds a rich record of interactions between water and minerals over successive periods of early Mars history.
This area tells a story of the on-again, off-again nature of the wet past of Mars. Water filled and drained away from the crater on at least two occasions. More than 3.5 billion years ago, river channels spilled over the crater wall and created a lake. Scientists see evidence that water carried clay minerals from the surrounding area into the crater after the lake dried up. Conceivably, microbial life could have lived in Jezero during one or more of these wet times. If so, signs of their remains might be found in lakebed sediments.
At this site, mineral springs once bubbled up from the rocks. The discovery that hot springs flowed here was a major achievement of the Mars Exploration Rover, Spirit. The rover’s discovery was an especially welcome surprise because Spirit had not found signs of water anywhere else in the 100-mile-wide Gusev Crater. After the rover stopped working in 2010, studies of its older data records showed evidence that past floods may have formed a shallow lake in Gusev.
Candidate landing sites Jezero and Northeast Syrtis are approximately 37 km apart…which is close enough for regional geologic similarities to be present, but probably too far for the Mars 2020 rover to travel. This midway point allows exploration of areas of both landing sites.
The team is gathered this week for the fourth time to discuss these locations. It'll be the final workshop in a series designed to ensure we receive the best and most diverse range of information and opinion from the scientific community before deciding where to send our newest rover.
The Mars 2020 mission is tasked with not only seeking signs of ancient habitable conditions on Mars, but also searching for signs of past microbial life itself. So how do we choose a landing site that will optimize these goals? Since InSight is stationary and needs a flat surface to deploy its instruments, we’re basically looking for a flat, parking lot area on Mars to land the spacecraft.
The first workshop started with about 30 candidate landing sites and was narrowed down to eight locations to evaluate further. At the end of the third workshop in February 2017, there were only three sites on the radar as potential landing locations…
…but in the ensuing months, a proposal came forward for a landing site that is in between Jezero and Northeast Syrtis – The Midway site. Since our goal is to get to the right site that provides the maximum science, this fourth site was viewed as worthy of being included in the discussions.
Now, with four sites remaining, champions for each option will take their turn at the podium, presenting and defending their favorite spot on the Red Planet.
On the final day, after all presentations have concluded, workshop participants will weigh the pros and cons of each site. The results of these deliberations will be provided to the Mars 2020 Team, which will incorporate them into a recommendation to NASA Headquarters. A final selection will be made and will likely be announced by the end of the year.
To get more information about the workshop, visit: https://marsnext.jpl.nasa.gov/workshops/wkshp_2018_10.cfm
Learn more about our Mars 2020 rover HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Sept. 15, 2017, our Cassini spacecraft ended its epic exploration of Saturn with a planned dive into the planet’s atmosphere–sending back new science to the very last second. The spacecraft is gone, but the science continues!
New research emerging from the final orbits represents a huge leap forward in our understanding of the Saturn system -- especially the mysterious, never-before-explored region between the planet and its rings. Some preconceived ideas are turning out to be wrong while new questions are being raised. How did they form? What holds them in place? What are they made of?
Six teams of researchers are publishing their work Oct. 5 in the journal Science, based on findings from Cassini's Grand Finale. That's when, as the spacecraft was running out of fuel, the mission team steered Cassini spectacularly close to Saturn in 22 orbits before deliberately vaporizing it in a final plunge into the atmosphere in September 2017.
Knowing Cassini's days were numbered, its mission team went for gold. The spacecraft flew where it was never designed to fly. For the first time, it probed Saturn's magnetized environment, flew through icy, rocky ring particles and sniffed the atmosphere in the 1,200-mile-wide (2,000-kilometer-wide) gap between the rings and the cloud tops. Not only did the engineering push the spacecraft to its limits, the new findings illustrate how powerful and agile the instruments were.
Many more Grand Finale science results are to come, but today's highlights include:
Complex organic compounds embedded in water nanograins rain down from Saturn's rings into its upper atmosphere. Scientists saw water and silicates, but they were surprised to see also methane, ammonia, carbon monoxide, nitrogen and carbon dioxide. The composition of organics is different from that found on moon Enceladus – and also different from those on moon Titan, meaning there are at least three distinct reservoirs of organic molecules in the Saturn system.
For the first time, Cassini saw up close how rings interact with the planet and observed inner-ring particles and gases falling directly into the atmosphere. Some particles take on electric charges and spiral along magnetic-field lines, falling into Saturn at higher latitudes -- a phenomenon known as "ring rain." But scientists were surprised to see that others are dragged quickly into Saturn at the equator. And it's all falling out of the rings faster than scientists thought -- as much as 10,000 kg of material per second.
Scientists were surprised to see what the material looks like in the gap between the rings and Saturn's atmosphere. They knew that the particles throughout the rings ranged from large to small. They thought material in the gap would look the same. But the sampling showed mostly tiny, nanograin- and micron-sized particles, like smoke, telling us that some yet-unknown process is grinding up particles. What could it be? Future research into the final bits of data sent by Cassini may hold the answer.
Saturn and its rings are even more interconnected than scientists thought. Cassini revealed a previously unknown electric current system that connects the rings to the top of Saturn's atmosphere.
Scientists discovered a new radiation belt around Saturn, close to the planet and composed of energetic particles. They found that while the belt actually intersects with the innermost ring, the ring is so tenuous that it doesn’t block the belt from forming.
Unlike every other planet with a magnetic field in our Solar System, Saturn's magnetic field is almost completely aligned with its spin axis. Think of the planet and the magnetic field as completely separate things that are both spinning. Both have the same center point, but they each have their own axis about which they spin. But for Saturn the two axes are essentially the same – no other planet does that, and we did not think it was even possible for this to happen. This new data shows a magnetic-field tilt of less than 0.0095 degrees. (Earth's magnetic field is tilted 11 degrees from its spin axis.) According to everything scientists know about how planetary magnetic fields are generated, Saturn should not have one. It's a mystery physicists will be working to solve.
Cassini flew above Saturn's magnetic poles, directly sampling regions where radio emissions are generated. The findings more than doubled the number of reported crossings of radio sources from the planet, one of the few non-terrestrial locations where scientists have been able to study a mechanism believed to operate throughout the universe. How are these signals generated? That’s still a mystery researchers are looking to uncover.
For the Cassini mission, the science rolling out from Grand Finale orbits confirms that the calculated risk of diving into the gap -- skimming the upper atmosphere and skirting the edge of the inner rings -- was worthwhile.
Almost everything going on in that region turned out to be a surprise, which was the importance of going there, to explore a place we'd never been before. And the expedition really paid off!
Analysis of Cassini data from the spacecraft’s instruments will be ongoing for years to come, helping to paint a clearer picture of Saturn.
To read the papers published in Science, visit: URL to papers
To learn more about the ground-breaking Cassini mission and its 13 years at Saturn, visit: https://www.nasa.gov/mission_pages/cassini/main/index.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
One year ago, on Sept. 15, 2017, NASA’s Cassini spacecraft ended its epic exploration of Saturn with a planned dive into the planet’s atmosphere--sending back new science to the last second. The spacecraft is gone, but the science continues. Here are 10 reasons why Cassini mattered...
Cassini and ESA (European Space Agency)’s Huygens probe expanded our understanding of the kinds of worlds where life might exist.
At Saturn’s largest moon, Titan, Cassini and Huygens showed us one of the most Earth-like worlds we’ve ever encountered, with weather, climate and geology that provide new ways to understand our home planet.
Cassini gave us a portal to see the physical processes that likely shaped the development of our solar system, as well as planetary systems around other stars.
The length of Cassini’s mission enabled us to observe weather and seasonal changes over nearly half of a Saturn year, improving our understanding of similar processes at Earth, and potentially those at planets around other stars.
Cassini revealed Saturn’s moons to be unique worlds with their own stories to tell.
Cassini showed us the complexity of Saturn’s rings and the dramatic processes operating within them.
Some of Cassini’s best discoveries were serendipitous. What Cassini found at Saturn prompted scientists to rethink their understanding of the solar system.
Cassini represented a staggering achievement of human and technical complexity, finding innovative ways to use the spacecraft and its instruments, and paving the way for future missions to explore our solar system.
Cassini revealed the beauty of Saturn, its rings and moons, inspiring our sense of wonder and enriching our sense of place in the cosmos.
The data returned by Cassini during its 13 years at Saturn will continue to be studied for decades, and many new discoveries are undoubtedly waiting to be revealed. To keep pace with what’s to come, we’ve created a new home for the mission--and its spectacular images--at https://solarsystem.nasa.gov/cassini.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NASA’s newest planet-hunting satellite — the Transiting Exoplanet Survey Satellite, or TESS for short — has just released its first science image using all of its cameras to capture a huge swath of the sky! TESS is NASA’s next step in the search for planets outside our solar system, called exoplanets.
This spectacular image, the first released using all four of TESS’ cameras, shows the satellite’s full field of view. It captures parts of a dozen constellations, from Capricornus (the Sea Goat) to Pictor (the Painter’s Easel) — though it might be hard to find familiar constellations among all these stars! The image even includes the Large and Small Magellanic Clouds, our galaxy’s two largest companion galaxies.
The science community calls this image “first light,” but don’t let that fool you — TESS has been seeing light since it launched in April. A first light image like this is released to show off the first science-quality image taken after a mission starts collecting science data, highlighting a spacecraft’s capabilities.
TESS has been busy since it launched from NASA’s Kennedy Space Center in Cape Canaveral, Florida. First TESS needed to get into position, which required a push from the Moon. After nearly a month in space, the satellite passed about 5,000 miles from the Moon, whose gravity gave it the boost it needed to get into a special orbit that will keep it stable and maximize its view of the sky.
During those first few weeks, we also got a sneak peek of the sky through one of TESS’s four cameras. This test image captured over 200,000 stars in just two seconds! The spacecraft was pointed toward the constellation Centaurus when it snapped this picture. The bright star Beta Centauri is visible at the lower left edge, and the edge of the Coalsack Nebula is in the right upper corner.
After settling into orbit, scientists ran a number of checks on TESS, including testing its ability to collect a set of stable images over a prolonged period of time. TESS not only proved its ability to perform this task, it also got a surprise! A comet named C/2018 N1 passed through TESS’s cameras for about 17 hours in July.
The images show a treasure trove of cosmic curiosities. There are some stars whose brightness changes over time and asteroids visible as small moving white dots. You can even see an arc of stray light from Mars, which is located outside the image, moving across the screen.
Now that TESS has settled into orbit and has been thoroughly tested, it’s digging into its main mission of finding planets around other stars. How will it spot something as tiny and faint as a planet trillions of miles away? The trick is to look at the star!
So far, most of the exoplanets we’ve found were detected by looking for tiny dips in the brightness of their host stars. These dips are caused by the planet passing between us and its star – an event called a transit. Over its first two years, TESS will stare at 200,000 of the nearest and brightest stars in the sky to look for transits to identify stars with planets.
TESS will be building on the legacy of NASA’s Kepler spacecraft, which also used transits to find exoplanets. TESS’s target stars are about 10 times closer than Kepler’s, so they’ll tend to be brighter. Because they're closer and brighter, TESS’s target stars will be ideal candidates for follow-up studies with current and future observatories.
TESS is challenging over 200,000 of our stellar neighbors to a staring contest! Who knows what new amazing planets we’ll find?
The TESS mission is led by MIT and came together with the help of many different partners. You can keep up with the latest from the TESS mission by following mission updates.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’re set to launch ICESat-2, our most advanced laser instrument of its kind, into orbit around Earth on Sept. 15. The Ice, Cloud and land Elevation Satellite-2 will make critical observations of how ice sheets, glaciers and sea ice are changing over time, helping us better understand how those changes affect people where they live. Here’s 10 numbers to know about this mission:
There’s only one scientific instrument on ICESat-2, but it’s a marvel. The Advanced Topographic Laser Altimeter System, or ATLAS, measures height by precisely timing how long it takes individual photons of light from a laser to leave the satellite, bounce off Earth, and return to ICESat-2. Hundreds of people at our Goddard Space Flight Center worked to build this smart-car-sized instrument to exacting requirements so that scientists can measure minute changes in our planet’s ice.
Sea ice is seen in front of Apusiaajik Glacier in Greenland. Credit: NASA/JPL-Caltech/Jim Round
Not all ice is the same. Land ice, like the ice sheets in Greenland and Antarctica, or glaciers dotting the Himalayas, builds up as snow falls over centuries and forms compacted layers. When it melts, it can flow into the ocean and raise sea level. Sea ice, on the other hand, forms when ocean water freezes. It can last for years, or a single winter. When sea ice disappears, there is no effect on sea level (think of a melting ice cube in your drink), but it can change climate and weather patterns far beyond the poles.
ICESat-2 will measure elevation to see how much glaciers, sea ice and ice sheets are rising or falling. Our fleet of satellites collect detailed images of our planet that show changes to features like ice sheets and forests, and with ICESat-2’s data, scientists can add the third dimension – height – to those portraits of Earth.
ICESat-2’s orbit will make 1,387 unique ground tracks around Earth in 91 days – and then start the same ground pattern again at the beginning. This allows the satellite to measure the same ground tracks four times a year and scientists to see how glaciers and other frozen features change with the seasons – including over winter.
The ATLAS instrument will measure ice with a laser that shines at 532 nanometers – a bright green on the visible spectrum. When these laser photons return to the satellite, they pass through a series of filters that block any light that’s not exactly at this wavelength. This helps the instrument from being swamped with all the other shades of sunlight naturally reflected from Earth.
While the first ICESat satellite (2003-2009) measured ice with a single laser beam, ICESat-2 splits its laser light into six beams – the better to cover more ground (or ice). The arrangement of the beams into three pairs will also allow scientists to assess the slope of the surface they’re measuring.
ICESat-2 will zoom above the planet at 7 km per second (4.3 miles per second), completing an orbit around Earth in 90 minutes. The orbits have been set to converge at the 88-degree latitude lines around the poles, to focus the data coverage in the region where scientists expect to see the most change.
All of those height measurements come from timing the individual laser photons on their 600-mile roundtrip between the satellite and Earth’s surface – a journey that is timed to within 800 picoseconds. That’s a precision of nearly a billionth of a second. Our engineers had to custom build a stopwatch-like device, because no existing timers fit the strict requirements.
As ICESat-2 measures the poles, it adds to our record of ice heights that started with the first ICESat and continued with Operation IceBridge, an airborne mission that has been flying over the Arctic and Antarctic for nine years. The campaign, which bridges the gap between the two satellite missions, has flown since 2009, taking height measurements and documenting the changing ice.
ICESat-2’s laser will fire 10,000 times in one second. The original ICESat fired 40 times a second. More pulses mean more height data. If ICESat-2 flew over a football field, it would take 130 measurements between end zones; its predecessor, on the other hand, would have taken one measurement in each end zone.
Each laser pulse ICESat-2 fires contains about 300 trillion photons! Again, the laser instrument is so precise that it can time how long it takes individual photons to return to the satellite to within one billionth of a second.
Learn more about ICESat-2: https://www.nasa.gov/icesat-2
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Aug. 12, 2018, we launched Parker Solar Probe to the Sun, where it will fly closer than any spacecraft before and uncover new secrets about our star. Here's what you need to know.
At about 1,400 pounds, Parker Solar Probe is relatively light for a spacecraft, but it launched to space aboard one of the most powerful rockets in the world, the United Launch Alliance Delta IV Heavy. That's because it takes a lot of energy to go to the Sun — in fact, 55 times more energy than it takes to go to Mars.
Any object launched from Earth starts out traveling at about the same speed and in the same direction as Earth — 67,000 mph sideways. To get close to the Sun, Parker Solar Probe has to shed much of that sideways speed, and a strong launch is good start.
Parker Solar Probe is headed for the Sun, but it's flying by Venus along the way. This isn't to see the sights — Parker will perform a gravity assist at Venus to help draw its orbit closer to the Sun. Unlike most gravity assists, Parker will actually slow down, giving some orbital energy to Venus, so that it can swing closer to the Sun.
One's not enough, though. Parker Solar Probe will perform similar maneuvers six more times throughout its seven-year mission!
At its closest approach toward the end of its seven-year prime mission, Parker Solar Probe will swoop within 3.83 million miles of the solar surface. That may sound pretty far, but think of it this way: If you put Earth and the Sun on opposite ends of an American football field, Parker Solar Probe would get within four yards of the Sun's end zone. The current record-holder was a spacecraft called Helios 2, which came within 27 million miles, or about the 30 yard line. Mercury orbits at about 36 million miles from the Sun.
This will place Parker well within the Sun's corona, a dynamic part of its atmosphere that scientists think holds the keys to understanding much of the Sun's activity.
Parker Solar Probe will also break the record for the fastest spacecraft in history. On its final orbits, closest to the Sun, the spacecraft will reach speeds up to 430,000 mph. That's fast enough to travel from New York to Tokyo in less than a minute!
Parker Solar Probe is named for Dr. Eugene Parker, the first person to predict the existence of the solar wind. In 1958, Parker developed a theory showing how the Sun’s hot corona — by then known to be millions of degrees Fahrenheit — is so hot that it overcomes the Sun’s gravity. According to the theory, the material in the corona expands continuously outwards in all directions, forming a solar wind.
This is the first NASA mission to be named for a living person, and Dr. Parker watched the launch with the mission team from Kennedy Space Center in Florida.
Even though Dr. Parker predicted the existence of the solar wind 60 years ago, there's a lot about it we still don't understand. We know now that the solar wind comes in two distinct streams, fast and slow. We've identified the source of the fast solar wind, but the slow solar wind is a bigger mystery.
Right now, our only measurements of the solar wind happen near Earth, after it has had tens of millions of miles to blur together, cool down and intermix. Parker's measurements of the solar wind, just a few million miles from the Sun's surface, will reveal new details that should help shed light on the processes that send it speeding out into space.
Another question we hope to answer with Parker Solar Probe is how some particles can accelerate away from the Sun at mind-boggling speeds — more than half the speed of light, or upwards of 90,000 miles per second. These particles move so fast that they can reach Earth in under half an hour, so they can interfere with electronics on board satellites with very little warning.
The third big question we hope to answer with this mission is something scientists call the coronal heating problem. Temperatures in the Sun's corona, where Parker Solar Probe will fly, spike upwards of 2 million degrees Fahrenheit, while the Sun's surface below simmers at a balmy 10,000 F. How the corona gets so much hotter than the surface remains one of the greatest unanswered questions in astrophysics.
Though scientists have been working on this problem for decades with measurements taken from afar, we hope measurements from within the corona itself will help us solve the coronal heating problem once and for all.
The corona reaches millions of degrees Fahrenheit, so how can we send a spacecraft there without it melting?
The key lies in the distinction between heat and temperature. Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is incredibly thin, and there are very few particles there to transfer energy — so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).
It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot.
Make no mistake, the environment in the Sun's atmosphere is extreme — hot, awash in radiation, and very far from home — but Parker Solar Probe is engineered to survive.
The spacecraft is outfitted with a cutting-edge heat shield made of a carbon composite foam sandwiched between two carbon plates. The heat shield is so good at its job that, even though the front side will receive the full brunt of the Sun's intense light, reaching 2,500 F, the instruments behind it, in its shadow, will remain at a cozy 85 F.
Even though Parker Solar Probe's solar panels — which provide the spacecraft's power — are retractable, even the small bit of surface area that peeks out near the Sun is enough to make them prone to overheating. So, to keep its cool, Parker Solar Probe circulates a single gallon of water through the solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.
For much of its journey, Parker Solar Probe will be too far from home and too close to the Sun for us to command it in real time — but don't worry, Parker Solar Probe can think on its feet. Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors — and the rest of the instruments — safely protected behind the heat shield.
Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Sun powers life on Earth. It defines our days, nourishes our crops and even fuels our electrical grids. In our pursuit of knowledge about the universe, we’ve learned so much about the Sun, but in many ways we’re still in conversation with it, curious about its mysteries.
Parker Solar Probe will advance this conversation, flying through the Sun’s atmosphere as close as 3.8 million miles from our star’s surface, more than seven times closer to it than any previous spacecraft. If space were a football field, with Earth at one end and the Sun at the other, Parker would be at the four-yard line, just steps away from the Sun! This journey will revolutionize our understanding of the Sun, its surface and solar winds.
Supporting Parker on its journey to the Sun are our communications networks. Three networks, the Near Earth Network, the Space Network and the Deep Space Network, provide our spacecraft with their communications, delivering their data to mission operations centers. Their services ensure that missions like Parker have communications support from launch through the mission.
For Parker’s launch on Aug. 12, the Delta IV Heavy rocket that sent Parker skyward relied on the Space Network. A team at Goddard Space Flight Center’s Networks Integration Center monitored the launch, ensuring that we maintained tracking and communications data between the rocket and the ground. This data is vital, allowing engineers to make certain that Parker stays on the right path towards its orbit around the Sun.
The Space Network’s constellation of Tracking and Data Relay Satellites (TDRS) enabled constant communications coverage for the rocket as Parker made its way out of Earth’s atmosphere. These satellites fly in geosynchronous orbit, circling Earth in step with its rotation, relaying data from spacecraft at lower altitudes to the ground. The network’s three collections of TDRS over the Atlantic, Pacific and Indian oceans provide enough coverage for continuous communications for satellites in low-Earth orbit.
The Near Earth Network’s Launch Communications Segment tracked early stages of Parker's launch, testing our brand new ground stations’ ability to provide crucial information about the rocket’s initial velocity (speed) and trajectory (path). When fully operational, it will support launches from the Kennedy spaceport, including upcoming Orion missions. The Launch Communications Segment’s three ground stations are located at Kennedy Space Center; Ponce De Leon, Florida; and Bermuda.
When Parker separated from the Delta IV Heavy, the Deep Space Network took over. Antennas up to 230 feet in diameter at ground stations in California, Australia and Spain are supporting Parker for its 24 orbits around the Sun and the seven Venus flybys that gradually shrink its orbit, bringing it closer and closer to the Sun. The Deep Space Network is delivering data to mission operations centers and will continue to do so as long as Parker is operational.
Near the Sun, radio interference and the heat load on the spacecraft’s antenna makes communicating with Parker a challenge that we must plan for. Parker has three distinct communications phases, each corresponding to a different part of its orbit.
When Parker comes closest to the Sun, the spacecraft will emit a beacon tone that tells engineers on the ground about its health and status, but there will be very little opportunity to command the spacecraft and downlink data. High data rate transmission will only occur during a portion of Parker’s orbit, far from the Sun. The rest of the time, Parker will be in cruise mode, taking measurements and being commanded through a low data rate connection with Earth.
Communications infrastructure is vital to any mission. As Parker journeys ever closer to the center of our solar system, each byte of downlinked data will provide new insight into our Sun. It’s a mission that continues a conversation between us and our star that has lasted many millions of years and will continue for many millions more.
For more information about NASA’s mission to touch the Sun: https://www.nasa.gov/content/goddard/parker-solar-probe
For more information about our satellite communications check out: http://nasa.gov/SCaN
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The first chance to launch Parker Solar Probe is 3:33 a.m. EDT on Aug. 11 from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Launch coverage on NASA TV starts at 3 a.m. EDT at nasa.gov/live.
After launch, Parker Solar Probe begins its daring journey to the Sun’s atmosphere, or corona, going closer to the Sun than any spacecraft in history and facing brutal heat and radiation.
Though Parker Solar Probe weighs a mere 1,400 pounds — pretty light for a spacecraft — it's launching aboard one of the world's most powerful rockets, a United Launch Alliance Delta IV Heavy with a third stage added.
Even though you might think the Sun's massive means things would just fall into it, it's surprisingly difficult to actually go there. Any object leaving Earth starts off traveling at about 67,000 miles per hour, same as Earth — and most of that is in a sideways direction, so you have to shed most of that sideways speed to make it to the Sun. All that means that it takes 55 times more launch energy to go to the Sun than it does to go to Mars. On top of its powerful launch vehicle, Parker Solar Probe will use seven Venus gravity assists to shed sideways speed.
Even though Parker Solar Probe will lose a lot of sideways speed, it'll still be going incredibly fast as its orbit draws closer to the Sun throughout its seven-year mission. At its fastest, Parker Solar Probe will travel at 430,000 miles per hour — fast enough to get from Philadelphia to Washington, D.C. in one second — setting the record for the fastest spacecraft in history.
But the real challenge was to keep the spacecraft from frying once it got there.
We’ve always wanted to send a mission to the corona, but we literally haven’t had the technology that can protect a spacecraft and its instruments from its scorching heat. Only recent advances have enabled engineers to build a heat shield that will protect the spacecraft on this journey of extremes — a tricky feat that requires withstanding the Sun’s intense radiation on the front and staying cool at the back, so the spacecraft and instruments can work properly.
The 4.5-inches-thick heat shield is built like a sandwich. There’s a thin layer of carbon material like you might find in your golf clubs or tennis rackets, carbon foam, and then another thin piece of carbon-carbon on the back. Even while the Sun-facing side broils at 2,500 degrees Fahrenheit, the back of the shield will remain a balmy 85 degrees — just above room temperature. There are so few particles in this region that it's a vacuum, so blocking the Sun's radiation goes a long way towards keeping the spacecraft cool.
Parker Solar Probe is also our first mission to be named after a living individual: Dr. Eugene Parker, famed solar physicist who in 1958 first predicted the existence of the solar wind.
"Solar wind" is what Dr. Parker dubbed the stream of charged particles that flows constantly from the Sun, bathing Earth and our entire solar system in the Sun’s magnetic fields. Parker Solar Probe’s flight right through the corona allows it to observe the birth of the very solar wind that Dr. Parker predicted, right as it speeds up and over the speed of sound.
The corona is where solar material is heated to millions of degrees and where the most extreme eruptions on the Sun occur, like solar flares and coronal mass ejections, which fling particles out to space at incredible speeds near the speed of light. These explosions can also spark space weather storms near Earth that can endanger satellites and astronauts, disrupt radio communications and, at their most severe, trigger power outages.
Thanks to Parker Solar Probe’s landmark mission, solar scientists will be able to see the objects of their study up close and personal for the very first time.
Up until now, all of our studies of the corona have been remote — that is, taken from a distance, rather than at the mysterious region itself. Scientists have been very creative to glean as much as possible from their remote data, but there’s nothing like actually sending a probe to the corona to see what’s going on.
And scientists aren’t the only ones along for the adventure — Parker Solar Probe holds a microchip carrying the names of more than 1.1 million people who signed up to send their name to the Sun. This summer, these names and 1,400 pounds of science equipment begin their journey to the center of our solar system.
Three months later in November 2018, Parker Solar Probe makes its first close approach to the Sun, and in December, it will send back the data. The corona is one of the last places in the solar system where no spacecraft has visited before; each observation Parker Solar Probe makes is a potential discovery.
Stay tuned — Parker Solar Probe is about to take flight.
Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Commercial Crew Program is working with the American aerospace industry to develop and operate a new generation of spacecraft to carry astronauts to and from low-Earth orbit!
As we prepare to launch humans from American soil for the first time since the final space shuttle mission in 2011, get to know the astronauts who will fly with Boeing and SpaceX as members of our commercial crew!
Bob Behnken served as Chief of the NASA Astronaut Office from July 2012 to July 2015, where he was responsible for flight assignments, mission preparation, on-orbit support of International Space Station crews and organization of astronaut office support for future launch vehicles. Learn more about Bob.
Eric Boe first dreamed of being an astronaut at age 5 after his parents woke him up to watch Neil Armstrong take his first steps onto the lunar surface. Learn more about Eric.
Josh Cassada holds a Master of Arts Degree and a Doctorate in Physics with a specialty in high energy particle physics from the University of Rochester, in Rochester, New York. He was selected as a NASA astronaut in 2013, and his first spaceflight will be as part of the Commercial Crew Program. Learn more about Josh.
Chris Ferguson served as a Navy pilot before becoming a NASA astronaut, and was commander aboard Atlantis for the final space shuttle flight, as part of the same crew as Doug Hurley. He retired from NASA in 2011 and has been an integral part of Boeing's CST-100 Starliner program. Learn more about Chris.
Victor Glover was selected as a NASA astronaut in 2013 while working as a Legislative Fellow in the United States Senate. His first spaceflight will be as part of the Commercial Crew Program. Learn more about Victor.
Mike Hopkins was a top flight test engineer at the United States Air Force Test Pilot School. He also studied political science at the Università degli Studi di Parma in Parma, Italy, in 2005, and became a NASA astronaut in 2009. Learn more about Mike.
In 2009, Doug Hurley was one of the record-breaking 13 people living on the space station at the same time. In 2011, he served as the pilot on Atlantis during the final space shuttle mission, delivering supplies and spare parts to the International Space Station. Now, he will be one of the first people to launch from the U.S. since that last shuttle mission. Learn more about Doug.
Nicole Mann is a Naval Aviator and a test pilot in the F/A-18 Hornet. She was selected as a NASA astronaut in 2013, and her first spaceflight will be as part of the Commercial Crew Program. Learn more about Nicole.
Suni Williams has completed 7 spacewalks, totaling 50 hours and 40 minutes. She’s also known for running. In April 2007, Suni ran the first marathon in space, the Boston Marathon, in 4 hours and 24 minutes. Learn more about Suni.
Boeing and SpaceX are scheduled to complete their crew flight tests in mid-2019 and April 2019, respectively. Once enabled, commercial transportation to and from the International Space Station will empower more station use, more research time and more opportunities to understand and overcome the challenges of living in space, which is critical for us to create a sustainable presence on the Moon and carry out missions deeper into the solar system, including Mars!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Gamma-ray bursts are the brightest, most violent explosions in the universe, but they can be surprisingly tricky to detect. Our eyes can't see them because they are tuned to just a limited portion of the types of light that exist, but thanks to technology, we can even see the highest-energy form of light in the cosmos — gamma rays.
So how did we discover gamma-ray bursts?
Accidentally!
We didn’t actually develop gamma-ray detectors to peer at the universe — we were keeping an eye on our neighbors! During the Cold War, the United States and the former Soviet Union both signed the Nuclear Test Ban Treaty of 1963 that stated neither nation would test nuclear weapons in space. Just one week later, the US launched the first Vela satellite to ensure the treaty wasn’t being violated. What they saw instead were gamma-ray events happening out in the cosmos!
Things Going Bump in the Cosmos
Each of these gamma-ray events, dubbed “gamma-ray bursts” or GRBs, lasted such a short time that information was very difficult to gather. For decades their origins, locations and causes remained a cosmic mystery, but in recent years we’ve been able to figure out a lot about GRBs. They come in two flavors: short-duration (less than two seconds) and long-duration (two seconds or more). Short and long bursts seem to be caused by different cosmic events, but the end result is thought to be the birth of a black hole.
Short GRBs are created by binary neutron star mergers. Neutron stars are the superdense leftover cores of really massive stars that have gone supernova. When two of them crash together (long after they’ve gone supernova) the collision releases a spectacular amount of energy before producing a black hole. Astronomers suspect something similar may occur in a merger between a neutron star and an already-existing black hole.
Long GRBs account for most of the bursts we see and can be created when an extremely massive star goes supernova and launches jets of material at nearly the speed of light (though not every supernova will produce a GRB). They can last just a few seconds or several minutes, though some extremely long GRBs have been known to last for hours!
A Gamma-Ray Burst a Day Sends Waves of Light Our Way!
Our Fermi Gamma-ray Space Telescope detects a GRB nearly every day, but there are actually many more happening — we just can’t see them! In a GRB, the gamma rays are shot out in a narrow beam. We have to be lined up just right in order to detect them, because not all bursts are beamed toward us — when we see one it's because we're looking right down the barrel of the gamma-ray gun. Scientists estimate that there are at least 50 times more GRBs happening each day than we detect!
So what’s left after a GRB — just a solitary black hole? Since GRBs usually last only a matter of seconds, it’s very difficult to study them in-depth. Fortunately, each one leaves an afterglow that can last for hours or even years in extreme cases. Afterglows are created when the GRB jets run into material surrounding the star. Because that material slows the jets down, we see lower-energy light, like X-rays and radio waves, that can take a while to fade. Afterglows are so important in helping us understand more about GRBs that our Neil Gehrels Swift Observatory was specifically designed to study them!
Last fall, we had the opportunity to learn even more from a gamma-ray burst than usual! From 130 million light-years away, Fermi witnessed a pair of neutron stars collide, creating a spectacular short GRB. What made this burst extra special was the fact that ground-based gravitational wave detectors LIGO and Virgo caught the same event, linking light and gravitational waves to the same source for the first time ever!
For over 10 years now, Fermi has been exploring the gamma-ray universe. Thanks to Fermi, scientists are learning more about the fundamental physics of the cosmos, from dark matter to the nature of space-time and beyond. Discover more about how we’ll be celebrating Fermi’s achievements all year!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Parker Solar Probe will get closer to the Sun than any spacecraft has ever gone – it will fly right through the Sun's corona, part of the Sun's atmosphere.
This spacecraft is full of cutting-edge technology, from its heat shield down to its guidance and control systems. It also carries four suites of advanced instruments designed to study the Sun in a multitude of ways.
1. Measuring particles
Two of Parker Solar Probe's instrument suites are focused on measuring particles – electrons and ions – within the corona.
One of these particle-measuring instrument suites is SWEAP (Solar Wind Electrons Alphas and Protons). SWEAP counts the most common particles in the solar wind – the Sun's constant outflow of material – and measures their properties, like velocity, density and temperature. Gathering this information about solar wind particles will help scientists better understand why the solar wind reaches supersonic speeds and exactly which part of the Sun the particles come from.
One instrument in the SWEAP suite is the Solar Probe Cup. Most of the instruments on Parker Solar Probe stay safe and cool in the shadow of the heat shield, but the Solar Probe Cup is one of the few that sticks out. That's so it can capture and measure particles streaming straight out from the Sun, and it had to go through some intense testing to get ready for this position in the Sun's incredibly hot corona.
Credit: Levi Hutmacher/Michigan Engineering
The ISʘIS suite (pronounced EE-sis, and including the symbol for the Sun in its acronym) also measures particles. ISʘIS is short for Integrated Science Investigation of the Sun, and this instrument suite measures particles that move faster – and therefore have more energy – than the solar wind.
These measurements will help scientists understand these particles' lifecycles – where they came from, how they got to be traveling so fast (these particles can reach speeds more than half the speed of light!) and what path they take as they travel away from the Sun and into interplanetary space.
2. Taking pictures – but not of the Sun's surface.
WISPR (Wide-Field Imager for Parker Solar Probe) has the only two cameras on Parker Solar Probe – but they're not pointed directly at the Sun. Instead, WISPR looks out the side of the spacecraft, in the direction it's traveling, looking at the space Parker Solar Probe is about to fly through. From that vantage point, WISPR captures images of structures within the corona like coronal mass ejections, or CMEs. CMEs are clouds of solar material that occasionally explode from the Sun at millions of miles per hour. Because this solar material is magnetized, CMEs can trigger geomagnetic storms when they reach Earth – which, in turn, can cause effects like auroras and even, in extreme cases, power outages.
Right now, our observations of events like these come from satellites orbiting near Earth, so WISPR will give us a whole new perspective. And, scientists will be able to combine WISPR's images with Parker Solar Probe's direct particle measurements to get a better idea of how these structures change as they travel.
3. Studying electric & magnetic fields
The FIELDS instrument suite is appropriately named: It's what scientists will use to study the electric and magnetic fields in the corona.
Electric and magnetic fields are key to understanding what happens, not only on the Sun, but throughout space, because they are the primary driver accelerating charged particles. In particular, a process called magnetic reconnection – when magnetic field lines explosively realign, sending particles rocketing away at incredible speeds – is thought to drive solar explosions, as well as space weather effects on Earth, like the aurora.
FIELDS measures electric and magnetic field at high time resolution, meaning it takes lots of measurements in a short amount of time, to track these processes and shed some light on the mechanics underlying the Sun's behavior. FIELDS' measurements are precisely synced up with those of the SWEAP suite (one of the sets of instruments studying particles) so that scientists can match up the immediate effects that electric and magnetic fields have on the material of the solar wind.
Parker Solar Probe launches summer 2018 on its mission to study the Sun. Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The mission, called Parker Solar Probe, is outfitted with a lineup of instruments to measure the Sun's particles, magnetic and electric fields, solar wind and more – all to help us better understand our star, and, by extension, stars everywhere in the universe.
Parker Solar Probe is about the size of a small car, and after launch – scheduled for no earlier than Aug. 6, 2018 – it will swing by Venus on its way to the Sun, using a maneuver called a gravity assist to draw its orbit closer to our star. Just three months after launch, Parker Solar Probe will make its first close approach to the Sun – the first of 24 throughout its seven-year mission.
Though Parker Solar Probe will get closer and closer to the Sun with each orbit, the first approach will already place the spacecraft as the closest-ever human-made object to the Sun, swinging by at 15 million miles from its surface. This distance places it well within the corona, a region of the Sun's outer atmosphere that scientists think holds clues to some of the Sun's fundamental physics.
For comparison, Mercury orbits at about 36 million miles from the Sun, and the previous record holder – Helios 2, in 1976 – came within 27 million miles of the solar surface.
Humanity has studied the Sun for thousands of years, and our modern understanding of the Sun was revolutionized some 60 years ago with the start of the Space Age. We've come to understand that the Sun affects Earth in more ways than just providing heat and light – it's an active and dynamic star that releases solar storms that influence Earth and other worlds throughout the solar system. The Sun's activity can trigger the aurora, cause satellite and communications disruptions, and even – in extreme cases – lead to power outages.
Much of the Sun's influence on us is embedded in the solar wind, the Sun's constant outflow of magnetized material that can interact with Earth's magnetic field. One of the earliest papers theorizing the solar wind was written by Dr. Gene Parker, after whom the mission is named.
Though we understand the Sun better than we ever have before, there are still big questions left to be answered, and that's where scientists hope Parker Solar Probe will help.
First, there's the coronal heating problem. This refers to the counterintuitive truth that the Sun's atmosphere – the corona – is much, much hotter than its surface, even though the surface is millions of miles closer to the Sun's energy source at its core. Scientists hope Parker Solar Probe's in situ and remote measurements will help uncover the mechanism that carries so much energy up into the upper atmosphere.
Second, scientists hope to better understand the solar wind. At some point on its journey from the Sun out into space, the solar wind is accelerated to supersonic speeds and heated to extraordinary temperatures. Right now, we measure solar wind primarily with a group of satellites clustered around Lagrange point 1, a spot in space between the Sun and Earth some 1 million miles from us.
By the time the solar wind reaches these satellites, it has traveled about 92 million miles already, blending together the signatures that could shed light on the acceleration process. Parker Solar Probe, on the other hand, will make similar measurements less than 4 million miles from the solar surface – much closer to the solar wind's origin point and the regions of interest.
Scientists also hope that Parker Solar Probe will uncover the mechanisms at work behind the acceleration of solar energetic particles, which can reach speeds more than half as fast as the speed of light as they rocket away from the Sun! Such particles can interfere with satellite electronics, especially for satellites outside of Earth's magnetic field.
Parker Solar Probe will launch from Space Launch Complex 37 at Cape Canaveral Air Force Station, adjacent to NASA’s Kennedy Space Center in Florida. Because of the enormous speed required to achieve its solar orbit, the spacecraft will launch on a United Launch Alliance Delta IV Heavy, one of the most powerful rockets in the world.
Stay tuned over the next few weeks to learn more about Parker Solar Probe's science and follow along with its journey to launch. We'll be posting updates here on Tumblr, on Twitter and Facebook, and at nasa.gov/solarprobe.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In July 2015, we saw Pluto up close for the first time and—after three years of intense study—the surprises keep coming. “It’s clear,” says Jeffery Moore, New Horizons’ geology team lead, “Pluto is one of the most amazing and complex objects in our solar system.”
These are combined observations of Pluto over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930. More frames show of Pluto as seen by the Hubble Space Telescope. The final sequence zooms in to a close-up frame of Pluto taken by our New Horizons spacecraft on July 14, 2015.
Pluto’s surface sports a remarkable range of subtle colors are enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Zoom in on the full resolution image on a larger screen to fully appreciate the complexity of Pluto’s surface features.
July 14, 2015: New Horizons team members Cristina Dalle Ore, Alissa Earle and Rick Binzel react to seeing the spacecraft's last and sharpest image of Pluto before closest approach.
Just 15 minutes after its closest approach to Pluto, the New Horizons spacecraft captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto's horizon. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.
Found near the mountains that encircle Pluto’s Sputnik Planitia plain, newly discovered ridges appear to have formed out of particles of methane ice as small as grains of sand, arranged into dunes by wind from the nearby mountains.
The vast nitrogen ice plains of Pluto’s Sputnik Planitia – the western half of Pluto’s “heart”—continue to give up secrets. Scientists processed images of Sputnik Planitia to bring out intricate, never-before-seen patterns in the surface textures of these glacial plains.
High resolution images of Pluto’s largest moon, Charon, show a surprisingly complex and violent history. Scientists expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more.
One of two potential cryovolcanoes spotted on the surface of Pluto by the New Horizons spacecraft. This feature, known as Wright Mons, was informally named by the New Horizons team in honor of the Wright brothers. At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, this feature is enormous. If it is in fact an ice volcano, as suspected, it would be the largest such feature discovered in the outer solar system.
Pluto's receding crescent as seen by New Horizons at a distance of 120,000 miles (200,000 kilometers). Scientists believe the spectacular blue haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto's atmosphere. These hydrocarbons accumulate into small haze particles, which scatter blue sunlight—the same process that can make haze appear bluish on Earth.
On Jan. 1, 2019, New Horizons will fly past a small Kuiper Belt Object named MU69 (nicknamed Ultima Thule)—a billion miles (1.5 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth. It will be the most distant encounter of an object in history—so far—and the second time New Horizons has revealed never-before-seen landscapes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Satellites are crucial to everyday life and cost hundreds of millions of dollars to manufacture and launch. Currently, they are simply decommissioned when they run out of fuel. There is a better way, and it centers on satellite servicing, which can make spaceflight more sustainable, affordable, and resilient. Our satellite servicing technologies will open up a new world where fleet managers can call on robotic mechanics to diagnose, maintain and extend the lifespan of their assets.
Our new and unique robot is designed to test robotic satellite servicing capabilities. Standing 10 feet tall and 16 feet wide, the six-legged “hexapod” robot helps engineers perfect technologies before they’re put to use in space.
Here are SIX interesting facts about the hexapod:
This essentially means the robot can move in six directions—three translational directions (forward and backward, up and down and left and right), and three rotational directions (roll, pitch and yaw). Because of its wide range of movement, the hexapod mimics the way a satellite moves in zero gravity.
Like most space simulators, the hexapod typically moves slowly at about one inch per second. During tests, it remains positioned about nine feet off the floor to line up with and interact with a robotic servicing arm mounted to an arch nearby. However, the robot can move at speeds up to eight inches per second and extend/reach nearly 13 feet high!
The hexapod is crucial to testing for our Restore-L project, which will prove a combination of technologies needed to robotically refuel a satellite not originally designed to be refueled in space.
Perhaps the most difficult part of refueling a satellite in space is the autonomous rendezvous and grapple stage. A satellite in need of fuel might be moving 16,500 miles per hour in the darkness of space. A servicer satellite will need to match its speed and approach the client satellite, then grab it. This nail-biting stage needs to be done autonomously by the spacecraft’s systems (no humans controlling operations from the ground).
The hexapod helps us practice this never-before-attempted feat in space-like conditions. Eventually a suite of satellite servicing capabilities could be incorporated in other missions.
Because of the hexapod’s unparalleled* ability to handle a high load capacity and range of movement, while maintaining a high degree of precision and repeatability, a similar kind of robot is used for flight and roller coaster simulators.
*Pun intended: the hexapod is what is referred to as a parallel motion robot
The hexapod was designed and built by a small, New Hampshire-based company called Mikrolar. Mikrolar designs and produces custom robots that offer a wide range of motion and high degree of precision, for a wide variety of applications.
The hexapod conducts crucial tests at our Goddard Space Flight Center’s Robotic Operations Center (ROC). The ROC is a 5,000-square-foot facility with 50 feet high ceilings. It acts as an incubator for satellite servicing technologies. Within its black curtain-lined walls, space systems, components and tasks are put to the test in simulated environments, refined and finally declared ready for action in orbit.
The hexapod is not alone in the ROC. Five other robots test satellite servicing capabilities. Engineers use these robots to practice robotic repairs on satellites rendezvousing with objects in space.
Watch the hexapod in action HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Juno mission arrived at the King of Planets in July 2016. The intrepid robotic explorer has been revealing Jupiter's secrets ever since.
After an odyssey of almost five years and 1.7 billion miles (2.7 billion kilometers), our Juno spacecraft fired its main engine to enter orbit around Jupiter on July 4, 2016. Juno, with its suite of nine science instruments, was the first spacecraft to orbit the giant planet since the Galileo mission in the 1990s. It would be the first mission to make repeated excursions close to the cloud tops, deep inside the planet’s powerful radiation belts.
Juno carries a color camera called JunoCam. In a remarkable first for a deep space mission, the Juno team reached out to the general public not only to help plan which pictures JunoCam would take, but also to process and enhance the resulting visual data. The results include some of the most beautiful images in the history of space exploration.
It didn’t take long for Juno—and the science teams who hungrily consumed the data it sent home—to turn theories about how Jupiter works inside out. Among the early findings: Jupiter's poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together. Jupiter's iconic belts and zones were surprising, with the belt near the equator penetrating far beneath the clouds, and the belts and zones at other latitudes seeming to evolve to other structures below the surface.
The Goldstone Apple Valley Radio Telescope (GAVRT) project, a collaboration among NASA, JPL and the Lewis Center for Educational Research, lets students do real science with a large radio telescope. GAVRT data includes Jupiter observations relevant to Juno, and Juno scientists collaborate with the students and their teachers.
Measuring in at 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter's Great Red Spot is 1.3 times as wide as Earth. The storm has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking. In July 2017, Juno passed directly over the spot, and JunoCam images revealed a tangle of dark, veinous clouds weaving their way through a massive crimson oval.
“For hundreds of years scientists have been observing, wondering and theorizing about Jupiter’s Great Red Spot,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Now we have the best pictures ever of this iconic storm. It will take us some time to analyze all the data from not only JunoCam, but Juno’s eight science instruments, to shed some new light on the past, present and future of the Great Red Spot.”
Data collected by the Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. The solar system's most famous storm appears to have roots that penetrate about 200 miles (300 kilometers) into the planet's atmosphere.
Scientists on the Juno mission observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras – only not in ways the researchers expected. Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard Juno, scientists observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts. This is 10 to 30 times higher than the largest such auroral potentials observed at Earth.
Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What puzzled the researchers is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.
Juno scientists shared a 3D infrared movie depicting densely packed cyclones and anticyclones that permeate the planet’s polar regions, and the first detailed view of a dynamo, or engine, powering the magnetic field for any planet beyond Earth (video above). Juno mission scientists took data collected by the spacecraft’s Jovian InfraRed Auroral Mapper (JIRAM) instrument and generated a 3D fly-around of the Jovian world’s north pole.
Imaging in the infrared part of the spectrum, JIRAM captures light emerging from deep inside Jupiter equally well, night or day. The instrument probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter's cloud tops.
Powerful bolts of lightning light up Jupiter’s clouds. In some ways its lightning is just like what we’re used to on Earth. In other ways,it’s very different. For example, most of Earth’s lightning strikes near the equator; on Jupiter, it’s mostly around the poles.
In June, we approved an update to Juno’s science operations until July 2021. This provides for an additional 41 months in orbit around. Juno is in 53-day orbits rather than 14-day orbits as initially planned because of a concern about valves on the spacecraft’s fuel system. This longer orbit means that it will take more time to collect the needed science data, but an independent panel of experts confirmed that Juno is on track to achieve its science objectives and is already returning spectacular results. The spacecraft and all its instruments are healthy and operating nominally.
Read the full web version of this week’s ‘Solar System: 10 Things to Know’ article HERE.
For regular updates, follow NASA Solar System on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Opportunity rover is facing one of the greatest challenges of its 14 ½ year mission on the surface of Mars--a massive dust storm that has turned day to night. Opportunity is currently hunkered down on Mars near the center of a storm bigger than North America and Russia combined. The dust-induced darkness means the solar-powered rover can’t recharge its batteries.
This isn’t the first time Opportunity has had to wait out a massive storm. In 2007, a monthlong series of severe storms filled the Martian skies with dust. Power levels reached critical lows, but engineers nursed the rover back to health when sunlight returned.
Martian breezes proved a saving grace for the solar-powered Mars rovers in the past, sweeping away accumulated dust and enabling rovers to recharge and get back to science. This is Opportunity in 2014. The image on the left is from January 2014. The image on the right in March 2014.
Back in 1971, scientists were eager for their first orbital views of Mars. But when Mariner 9 arrived in orbit, the Red Planet was engulfed by a global dust storm that hid most of the surface for a month. When the dust settled, geologists got detailed views of the Martian surface, including the first glimpses of ancient riverbeds carved into the dry and dusty landscape.
As bad as the massive storm sounds, Mars isn’t capable of generating the strong winds that stranded actor Matt Damon’s character on the Red Planet in the movie The Martian. Mars’ atmosphere is too thin and winds are more breezy than brutal. The chore of cleaning dusty solar panels to maintain power levels, however, could be a very real job for future human explorers.
Scientists know to expect big dust storms on Mars, but the rapid development of the current one is surprising. Decades of Mars observations show a pattern of regional dust storms arising in northern spring and summer. In most Martian years, nearly twice as long as Earth years, the storms dissipate. But we’ve seen global dust storms in 1971, 1977, 1982, 1994, 2001 and 2007. The current storm season could last into 2019.
Dust is hard on machines, but can be a boon to science. A study of the 2007 storm published earlier this year suggests such storms play a role in the ongoing process of gas escaping from the top of Mars' atmosphere. That process long ago transformed wetter, warmer ancient Mars into today's arid, frozen planet. Three of our orbiters, the Curiosity rover and international partners are already in position to study the 2018 storm.
Mission controllers for Mars InSight lander--due to land on Mars in November--will be closely monitoring the storm in case the spacecraft’s landing parameters need to be adjusted for safety.
Once on the Red Planet, InSight will use sophisticated geophysical instruments to delve deep beneath the surface of Mars, detecting the fingerprints of the processes of terrestrial planet formation, as well as measuring the planet's "vital signs": Its "pulse" (seismology), "temperature" (heat flow probe), and "reflexes" (precision tracking).
One saving grace of dust storms is that they can actually limit the extreme temperature swings experienced on the Martian surface. The same swirling dust that blocks out sunlight also absorbs heat, raising the ambient temperature surrounding Opportunity.
Track the storm and check the weather on Mars anytime.
A dust storm in the Sahara can change the skies in Miami and temperatures in the North Atlantic. Earth scientists keep close watch on our home planet’s dust storms, which can darken skies and alter Earth’s climate patterns.
Read the full web version of this article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.
Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto's orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto.
The direction of elongation cycled back and forth over 6.39 days―the same as Pluto's rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.
Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto's underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)
Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).
Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.
This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.
In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.
This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.
This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.
Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.
Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.
Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Earth is a place dominated by water, mainly oceans. It’s also a place our researchers study to understand life. Trillions of gallons of water flow freely across the surface of our blue-green planet. Ocean’s vibrant ecosystems impact our lives in many ways.
In celebration of World Oceans Day, here are a few things you might not know about these complex waterways.
The way light is absorbed and scattered throughout the ocean determines which colors it takes on. Red, orange, yellow,and green light are absorbed quickly beneath the surface, leaving blue light to be scattered and reflected back. This causes us to see various blue and violet hues.
Follow the phytoplankton! These small plant-like organisms are the beginning of the food web for most of the ocean. As phytoplankton grow and multiply, they are eaten by zooplankton, small fish and other animals. Larger animals then eat the smaller ones. The fishing industry identifies good spots by using ocean color images to locate areas rich in phytoplankton. Phytoplankton, as revealed by ocean color, frequently show scientists where ocean currents provide nutrients for plant growth.
When we look at the ocean from space, we see many different shades of blue. Using instruments that are more sensitive than the human eye, we can measure carefully the fantastic array of colors of the ocean. Different colors may reveal the presence and amount of phytoplankton, sediments and dissolved organic matter.
About 70 percent of the planet is ocean, with an average depth of more than 12,400 feet. Given that light doesn’t penetrate much deeper than 330 feet below the water’s surface (in the clearest water), most of our planet is in a perpetual state of darkness. Although dark, this part of the ocean still supports many forms of life, some of which are fed by sinking phytoplankton.
Instruments on satellites in space, hundreds of kilometers above us, can measure many things about the sea: surface winds, sea surface temperature, water color, wave height, and height of the ocean surface.
The amount of salt varies depending on location. The Atlantic Ocean is saltier than the Pacific Ocean, for instance. Most of the salt in the ocean is the same kind of salt we put on our food: sodium chloride.
It will most likely have millions (yes, millions!) of bacteria and viruses, thousands of phytoplankton cells, and even some fish eggs, baby crabs, and small worms.
Just 3.5 percent of Earth’s water is fresh—that is, with few salts in it. You can find Earth’s freshwater in our lakes, rivers, and streams, but don’t forget groundwater and glaciers. Over 68 percent of Earth’s freshwater is locked up in ice and glaciers. And another 30 percent is in groundwater.
Just like forests are considered the “lungs of the earth”, phytoplankton is known for providing the same service in the ocean! They consume carbon dioxide, dissolved in the sunlit portion of the ocean, and produce about half of the world’s oxygen.
Want to learn more about how we study the ocean? Follow @NASAEarth on twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s a scientific conundrum with huge implications for our future: How will our planet react to increasing levels of carbon dioxide in the atmosphere?
Carbon – an essential building block for life – does not stay in one place or take only one form. Carbon, both from natural and human-caused sources, moves within and among the atmosphere, ocean and land.
We’ve been a trailblazer in using space-based and airborne sensors to observe and quantify carbon in the atmosphere and throughout the land and ocean, working with many U.S. and international partners.
Our Orbiting Carbon Observatory-2 (OCO-2) is making unprecedented, accurate global measurements of carbon dioxide levels in the atmosphere and providing unique information on associated natural processes.
ABoVE, our multi-year field campaign in Alaska and Canada is investigating how changes in Arctic ecosystems such as boreal forests in a warming climate result in changes to the balance of carbon moving between the atmosphere and land.
This August we’re embarking on an ocean expedition with the National Science Foundation to the northeast Pacific called EXPORTS that will help scientists develop the capability to better predict how carbon in the ocean moves, which could change as Earth’s climate changes.
ECOSTRESS is slated to launch this summer to the International Space Station to make the first-ever measurements of plant water use and vegetation stress on land – providing key insights into how plants link Earth’s global carbon cycle with its water cycle.
Later this year, ECOSTRESS will be joined on the space station by GEDI, which will use a space borne laser to help estimate how much carbon is locked in forests and how that quantity changes over time.
In early 2019, the OCO-3 instrument is scheduled to launch to the space station to complement OCO-2 observations and allow scientists to probe the daily cycle of carbon dioxide exchange processes over much of the Earth.
And still in the early stages of development is the Geostationary Carbon Cycle Observatory (GeoCarb) satellite, planned to launch in the early 2020s. GeoCarb will collect 10 million observations a day of carbon dioxide, methane and carbon monoxide.
Our emphasis on carbon cycle science and the development of new carbon-monitoring tools is expected to remain a top priority for years to come. READ MORE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Back in the day, movies started with a cartoon. Learn the secrets of the Red Planet in these animated 60 second chunks.
Watch two galaxies collide billions of years from now in this high-definition visualization.
Wait for the dark of the waning Moon next weekend to take in this 4K tour of our constant celestial companion.
Watch graceful dances in the Sun’s atmosphere in this series of videos created by our 24/7 Sun-sentinel, the Solar Dynamic Observatory (SDO).
Crank up the volume and learn about NASA science for this short video about some of our science missions, featuring a track by Fall Out Boy.
Follow an asteroid from its humble origins to its upcoming encounter with our spacecraft in this stunning visualization.
Join Apollo mission pilots as they fly—and even crash—during daring practice runs for landing on the Moon.
Join the crew of Apollo 8 as they become the first human beings to see the Earth rise over the surface of the Moon.
Watch a musical, whimsical recreation of the 2005 Huygens probe descent to Titan, Saturn’s giant moon.
Our Goddard Scientific Visualization Studio provides a steady stream of fresh videos for your summer viewing pleasure. Come back often and enjoy.
Read the full version of this article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
There are many paths to a career at NASA. Here are 10 amazing people on the frontlines of deep space exploration.
“I was running a pub in the North of England after dropping out of college, and as fate would have it, I met a lovely American physics lecturer Dr. Jim Gotaas,” said Abi Rymer (shown above in the bottom right of the group photo). Abi works on the Europa Clipper mission.
“I was sold on a course he ran on Observational Astronomy and Instrumentation at the University of Central Lancashire in Preston, Lancashire and I went from there to join the second year of the Physics and Astronomy at Royal Holloway, part of London University. I loved theoretical physics but never imagined I was talented enough to do a PhD. When I graduated, I was shocked to be top of the year.”
“Within seven months of being at NASA’s Jet Propulsion Laboratory,” says Brent Buffington, a mission design manager, “I figured out we could modify the Cassini Prime Mission trajectory to fly very close to the moon Tethys—a moon that didn’t have any close flybys in the original Prime Mission—and simultaneously lower a planned 621-mile (1,000-kilometer) targeted flyby of Hyperion down to 311 miles (500 kilometers). To be this young buck fresh out of grad school standing in front of a room full of seasoned engineers and scientists, trying to convince them that this was the right thing to do with a multi-billion dollar asset, and ultimately getting the trajectory modification approved was extremely rewarding.”
“Geochemical evidence suggests that between 4 and 2.5 billion years ago, there may have been an intermittent haze in the atmosphere of Earth similar to the haze in the atmosphere of Saturn’s moon Titan,” says astrobiologist Giada Arney. “It's a really alien phase of Earth's history —our planet wouldn't have been a pale blue dot, it would have been a pale orange dot. We thought about questions like: What would our planet look like if you were looking at it as an exoplanet? How you might infer biosignatures—the signs of life—from looking at such an alien planet?”
“I spent the summer after graduating from studying Mars' remnant magnetic field in the Planetary Magnetospheres Lab at NASA Goddard Space Flight Center,” says planetary geophysicist Lynnae Quick. “My advisor, Mario Acuña, showed me how to bring up Mars Global Surveyor (MGS) images of the Martian surface on my computer. This was the first time I'd ever laid eyes, firsthand, on images of another planet's surface returned from a spacecraft. I remember just being in awe.
“My second favorite moment has to be pouring over mosaics of Europa and learning to identify and map chaos regions, impact craters and other surface units during my first summer at APL. Once again, I felt that there was a whole other alien world at my fingertips.”
“A few months after NASA was formed I was asked if I knew anyone who would like to set up a program in space astronomy,” says Nancy Roman, a retired NASA astronomer. “I knew that taking on this responsibility would mean that I could no longer do research, but the challenge of formulating a program from scratch that I believed would influence astronomy for decades to come was too great to resist.”
“I took Planetary Surfaces with Bruce Murray (whom I later found out had been JPL’s fifth director) and did a presentation on Europa's chaos terrains,” say Serina Diniega, an investigation scientist on the Europa Clipper mission. “I was fascinated to learn about the different models proposed for the formation of these enigmatic features and the way in which scientists tried to discriminate between the models while having very limited observational data. In this, I realized I’d found my application: modeling the evolution of planetary landforms."
“I admire people who dedicate themselves 110 percent to what they do,” says Warren Kaye, a software engineer. “People like the recently deceased Stephen Hawking, who rose above his own physical limitations to develop new scientific theories, or Frank Zappa, who was able to produce something like 50 albums worth of music over a 20-year span.”
“I got to pick what the camera took pictures of in a given week, and then analyze those pictures from the standpoint of a geologist,” says Tanya Harrison, a planetary scientist. “There aren't many people in the world who get paid to take pictures of Mars every day! Seeing the first images...It was almost surreal -- not only are you picking what to take pictures of on Mars, you're also typically the first person on Earth to see those pictures when they come back from Mars.”
As a child, what did you want to be when you grew up?
“A scientist,” says Casey Lisse, a scientist on our New Horizons mission to Pluto and the Kuiper Belt.
At what point did you determine that you would become a scientist?
“Age 5.”
“Throughout my life, I’ve gone from being an extremely shy introvert to more of an outgoing extrovert,” says science writer Elizabeth Landau. “It’s been a gradual uphill climb. I used to be super shy. When I was really young, I felt like I didn't know how to talk to other kids. I was amazed by how people fluidly spoke to each other without thinking too hard about it, without appearing to have any kind of embarrassment or reservation about what they were saying. I've definitely developed confidence over time—now I can very quickly and comfortably switch from talking about something like physics to personal matters, and be totally open to listening to others as well.”
Check out the full version of “Solar System: 10 Things to Know This Week” HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
The launch went as planned. Our Soyuz spacecraft did a great job getting the three of us to the International Space Station (ISS).
A week later, it all seems like a blur. The bus driver played me a video of my family and friends delivering their good luck messages. After exiting the bus at the launch pad, I was fortunate to have the Soyuz chief designer (Roman) and NASA’s associate administrator for Human Exploration and Operations (Bill Gerstenmaier) walk me to the stairs and elevator that would take us to the top of the rocket for boarding. The temperature at the pad was approximately -17 degrees centigrade, and we were wearing the Russian Polar Bear suits over our spacesuits in order to stay warm. Walking in these suits is a little hard, and I was happy to have Roman and Bill helping me.
We walked into the fog created by the systems around the rocket, climbed the ladder, and waved goodbye. My last words before launch were to Bill, “Boiler Up!”. Bill is a fellow and very well-known Boilermaker. We strapped in, and the launch and docking were nominal. But I will add that the second stage cutoff and separation, and ignition of the third stage was very exciting. We were under approximately 4 Gs when the engine cutoff, which gave us a good jolt forward during the deceleration and then a good jolt back into the seat after the third stage ignited. I looked at Anton and we both began to giggle like school children.
We spent two days in orbit as our phase angle aligned with ISS. Surprisingly, I did not feel sick. I even got 4 hours of sleep the first night and nearly 6 hours the second night. Having not been able to use my diaper while sitting in the fetal position during launch, it was nice to get out of our seats and use the ACY (Russian toilet). Docking was amazing. I compared it to rendezvousing on a tanker in a fighter jet, except the rendezvous with ISS happened over a much larger distance. As a test pilot, it was very interesting to watch the vehicle capture and maintain the centerline of ISS’s MRM-1 docking port as well as capturing and maintaining the required speed profile.
Just like landing at the ship, I could feel the vehicle’s control system (thrusters) making smaller and faster corrections and recorrections. In the flight test world, this is where the “gains” increase rapidly and where any weaknesses in the control system will be exposed. It was amazing to see the huge solar arrays and tons of equipment go by my window during final approach. What an engineering marvel the ISS is. Smooth sailing right into the docking port we went!
About an hour later, after equalizing pressures between the station and Soyuz, we opened the hatch and greeted our friends already onboard. My first view of the inside of the space station looked pretty close to the simulators we have been training in for the last several years. My first words were, “Hey, what are you guys doing at Building 9?”. Then we tackled each other with celebratory hugs!
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry written by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
Our crew just finished the final training event before the launch. Tomorrow, at 13:20 local time (Baikonur), we will strap the Soyuz MS-07 spacecraft to our backs and fly it to low Earth orbit. We will spend 2.5 days in low Earth orbit before docking to the MRM-1 docking port on the International Space Station (ISS). There we will begin approximately 168 days of maintenance, service and science aboard one of the greatest engineering marvels that humans have ever created.
Today was bittersweet. Ending a 2-year process of intense training was welcomed by all of us. We are very tired. Seeing our families for the last time was difficult. I am pretty lucky, though. My wife, Raynette, and the kids have grown up around military service and are conditioned to endure the time spent apart during extended calls-to-duty. We are also very much anticipating the good times we will have upon my return in June. Sean and Amy showed me a few videos of them mucking it up at Red Square before flying out to Baikonur. Eric was impressed with the Russian guards marching in to relieve the watch at Red Square. Raynette was taking it all in stride and did not seem surprised by any of it. I think I might have a family of mutants who are comfortable anywhere. Nice! And, by the way, I am VERY proud of all of them!
Tomorrow’s schedule includes a wake-up at 04:00, followed by an immediate medical exam and light breakfast. Upon returning to our quarters, we will undergo a few simple medical procedures that should help make the 2.5-day journey to ISS a little more comfortable. I’ve begun prepping with motion sickness medication that should limit the nausea associated with the first phases of spaceflight. I will continue this effort through docking. This being my first flight, I’m not sure how my body will respond and am taking all precautions to maintain a good working capability. The commander will need my help operating the vehicle, and I need to not be puking into a bag during the busy times. We suit up at 09:30 and then report to the State Commission as “Готовы к Полёту”, or “Ready for Flight”. We’ll enter the bus, wave goodbye to our friends and family, and then head out to the launch pad. Approximately 2 kilometers from the launch pad, the bus will stop.
The crew will get out, pee on the bus’s tire, and then complete the last part of the drive to the launch pad. This is a traditional event first done by Yuri Gagarin during his historic first flight and repeated in his honor to this day. We will then strap in and prepare the systems for launch. Next is a waiting game of approximately 2 hours. Ouch. The crew provided five songs each to help pass the time. My playlist included “Born to Run” (Springsteen), “Sweet Child O’ Mine” (Guns and Roses), “Cliffs of Dover” (Eric Johnson), “More than a Feeling” (Boston), and “Touch the Sky” (Rainbow Bridge, Russian). Launch will happen precisely at 13:20.
I think this sets the stage. It’s 21:30, only 6.5 hours until duty calls. Time to get some sleep. If I could only lower my level of excitement!
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.