[ID: a figure in a textbook that has curved arrows to look like vectors in a field. The figure caption reads, "Is this a vector field? No. It's a picture" /end]
i'm a math student, currently persuing master's degree. this semester I'm taking courses on complex manifolds, category theory, equivariant cohomology and representation theory
my bachelor's thesis was about my partial result in the knot/link theory. right now I'm finishing that proof and hoping to publish it when (if?) I'm done. my interests include algebraic and geometric topology and the goal for this year is to get to know some algebraic geometry
I post updates of how I'm doing, photos of my ugly notes and sometimes share some study methods that proved to be useful to me
oh and math is my special interest, I take it way too seriously lol
–––
my posts with study tips:
tips for studying math
tips for studying math part 2: you have an exam but the course is boring
number theory: The Queen of Mathematics, in that it takes a lot from other fields and provides little in return, and people are weirdly sentimental about it.
combinatorics: Somehow simultaneously the kind of people who get really excited about Martin Gardner puzzles and very serious no-nonsense types who don’t care about understanding why something is true as long as they can prove that it’s true.
algebraic geometry: Here’s an interesting metaphor, and here’s several thousand pages of work fleshing it out.
differential geometry: There’s a lot of really cool stuff built on top of a lot of boring technical details, but they frequently fill entire textbooks or courses full of just the boring stuff, and they seem to think students will find this interesting in itself rather than as a necessary prerequisite to something better. So there’s definitely something wrong with them.
category theory: They don’t really seem to understand that the point of generalizing a result is so that you can apply it to other situations.
differential equations: physicists
real analysis: What if we took the most boring parts of a proof and just spent all our time studying those?
point-set topology: See real analysis, but less relevant to the real world.
complex analysis: Sorcery. I thought it seemed like sorcery because I didn’t know much about it, but then I learned more, and now the stuff I learned just seems like sorcery that I know how to do.
algebraic topology: Some of them are part of a conspiracy with category theorists to take over mathematics. I’m pretty sure that most algebraic topologists aren’t involved in that, but I don’t really know what else they’re up to.
functional analysis: Like real analysis but with category theorists’ generalization fetish.
group theory: Probably masochists? It’s hard to imagine how else someone could be motivated to read a thousand-page paper, let alone write one.
operator algebras: Seems cool but I can’t understand a word of it, so I can’t be sure they’re not just bullshitting the whole thing.
commutative/homological algebra: Diagram chases are of the devil, and these people are his worshipers.
7-9 VIII 2021
did math and coding nothing special really
sleep: good
concentration: good
phone time: good
reading about measure theory. here is a great book:
everything is so well explained here. i wish i could do more math than i have time for but i guess it's fine, it's holidays, i will wreck my brain completely anyway when october comes
tomorrow more measure theory and topo
28 V 2022
topology and analysis tests are over, both went I think alright
if I don't get 100% from topo I'm going to be very frustrated, because I studied hard and acquired deep understanding of the material – so far as to be able to hold a lecture for my classmate about any topic
analysis ughhh if I get ≥40% I will be overjoyed. but that's just the specifics of this subject, you study super hard and seem to be entirely ready, you solve all of the problems in prep and then best you can do is 40%. my best score so far was 42%, so anything more than that will be my lifetime record lmao, I want this so bad. I solved two problems entirely I think, which should give 40% already, and some pieces from two more, chances are I get 50%, which would be absolutely amazing
here are some pictures from me transforming math into an art project
stokes theorem
topology
I was thinking about how annoying I find what people say to me when I tell them that I'm not happy with how I'm doing at math. their first idea is to tell me how great I am and how all I do is good enough and shit like that. it doesn't help, it just feels like I am not being taken seriously. when I barely pass anything, am I really supposed to believe that everything is actually good? it feels like they skip getting to know my situation and just tell me what they would tell anyone, automatic
when I try to calm myself down and think something that will keep me going I don't try to force myself to be happy, fuck that, not being content with one's achievements is very fine, I believe not being happy all the time is fully natural and all that positivity feels so fake
instead what seems to work is asking myself where the rational threshold of being ok with how I'm doing is. the thing is I will never be satisfied, whatever I have, I always want more. but I can set the limits in advance and that stops me from falling into self-loathing loops
although what has really changed the game for me was getting a few good grades, finally I am achieving something, anything. people tell me that I should learn to be alright without this external reliance on achievements but how am I supposed to do that when the source of my low moods is precisely getting less than I want? I don't understand why I should brainwash myself into thinking that this is actually not what I want. the trick here is to separate the goal-orientedness from the sense of self-worth. the groundbreaking realization of mine was figuring out that I believe I deserve more than I get, that's why I am unhappy. so now that I am getting what I think what I deserve I obviously feel much better
I thought I could share what I learned about studying math so far. it will be very subjective with no scientific sources, pure personal experience, hence one shouldn't expect all of this to work, I merely hope to give some ideas
1. note taking
some time ago I stopped caring about making my notes pretty and it was a great decision – they are supposed to be useful. moreover, I try to write as little as possible. this way my notes contain only crucial information and I might actually use them later because finding things becomes much easier. there is no point in writing down everything, a lot of the time it suffices to know where to find things in the textbook later. also, I noticed that taking notes doesn't actually help me remember, I use it to process information that I'm reading, and if I write down too many details it becomes very chaotic. when I'm trying to process as much as possible in the spot while reading I'm better at structuring the information. so my suggestion would be to stop caring about the aesthetics and try to write down only what is the most important (such as definitions, statements of theorems, useful facts)
2. active learning
do not write down the proof as is, instead write down general steps and then try to fill in the details. it would be perfect to prove everything from scratch, but that's rarely realistic, especially when the exam is in a few days. breaking the proof down into steps and describing the general idea of each step naturally raises questions such as "why is this part important, what is the goal of this calculation, how to describe this reasoning in one sentence, what are we actually doing here". sometimes it's possible to give the proof purely in words, that's also a good idea. it's also much more engaging and creative than passively writing things down. another thing that makes learning more active is trying to come up with examples for the definitions
3. exercises
many textbooks give exercises between definitions and theorem, doing them right away is generally a good idea, that's another way to make studying more active. I also like to take a look at the exercises at the end of the chapter (if that's the case) once in a while to see which ones I could do with what I already learned and try to do them. sometimes it's really hard to solve problems freshly after studying the theory and that's what worked out examples are for, it helps. mamy textbooks offer solutions of exercises, I like to compare the "official" ones with mine. it's obviously better than reading the solution before solving the problem on my own, but when I'm stuck for a long time I check if my idea for the solution at least makes sense. if it's similar to the solution from the book then I know I should just keep going
4. textbooks and other sources
finding the right book is so important. I don't even want to think about all the time I wasted trying to work with a book that just wasn't it. when I need a textbook for something I google "best textbooks for [topic]" and usually there is already a discussion on MSE where people recommend sources and explain why they think that source is a good one, which also gives the idea of how it's written and what to expect. a lot of professors share their lecture/class notes online, which contain user-friendly explenations, examples, exercises chosen by experienced teachers to do in their class, sometimes you can even find exercises with solutions. using the internet is such an important skill
5. studying for exams
do not study the material in a linear order, instead do it by layers. skim everything to get the general idea of which topics need the most work, which can be skipped, then study by priority. other than that it's usually better to know the sketch of every proof than to know a half of them in great detail and the rest not at all. it's similar when it comes to practice problems, do not spend half of your time on easy stuff that could easily be skipped, it's better to practice a bit of everything than to be an expert in half of the topics and unable to solve easy problems from the rest. if the past papers are available they can be a good tool to take a "mock exam" after studying for some time, it gives an opoortunity to see, again, which topics need the most work
6. examples and counterexamples
there are those theorems with statements that take up half of the page because there are just so many assumptions. finding counterexamples for each assumption usually helps with that. when I have a lot of definitions to learn, thinking of examples for them makes everything more specific therefore easier to remember
7. motivation
and by that I mean motivation of concepts. learning something new is much easier if it's motivated with an interesting example, a question, or application. it's easier to learn something when I know that it will be useful later, it's worth it to try to make things more interesting
8. studying for exams vs studying longterm
oftentimes it is the case that the exam itself requires learning some specific types of problems, which do not really matter in the long run. of course, preparing for exams is important, but keep in mind that what really matters is learning things that will be useful in the future especially when they are relevant to the field of choice. just because "this will not be on the test" doesn't always mean it can be skipped
ok I think that's all I have for now. I hope someone will find these helpful and feel free to share yours
14 II 2023
so yesterday would be the last of my exams but I decided to retake both the written and the oral part. the grade I would get is 4, so not the highest possible, still pretty good especially for the standards of that course (it's one of the most difficult), but I am not satisfied
it was the professor who suggested I retake the exams, which surprised me, I was mentally prepared to finish being only half-happy about my results and his reactions, strangely enough, inspired me to try harder. he wouldn't offer it if he didn't think I could do better, right?
if he gave me a 5 with my written exam points I would feel like an impostor, because I don't think I am fluent enough with the topics to receive the best grade. to be graded 4 and not being effered the chance to try again would make me feel that it's done, I was just too slow and I can't do anything else to fix it (at least on paper, but we're talking symbolics now) and him giving me a second chance meant to me that he believes in my potential yet doesn't want to give me a participation trophy, instead he made it about earning the reward that I know I deserve
he achieved the aurea mediocritas with this and the most absurd part of it all is that he of all people was to give me this inspiration. half of the students I talk to think that he is pure evil, the majority of the other half think he is an inconsiderate asshole lmao
so in two weeks I'm trying the exam again. in the meantime I will have a party with friends (small – 5 people + my boyfriend's cat) and then I will be grading the math olympiad. afterwards my another grind of algebraic methods shall commence and this time please let me not fuck it up
I have a bet going on with a friend. We need a third opinion. Can one find the square root of 2 in pi? And pi in the root of 2
Gut instinct says no. But when you work with infinities, gut instinct is NOT proof. (And such a gut feeling could have easily been the dodgy dinner I cooked myself last night.)
However I cannot even provide a proof.
I have, however tried to give some insight in another post (it should be the one immediately below this one) to perhaps help/provoke a more concrete argument from someone else :)
6 VIII 2021
went back home
sleep: good, finally, although it's already almost 3 and i'm still up so i gotta go be unconscious for a few hours soon
concentration: fine
phone time: fine
did some measure theory, only this today and i'm in love, shit's fucking amazing
tomorrow i'll probably do more measure theory and possibly some coding
⁕ pure math undergrad ⁕ in love with anything algebraic ⁕
292 posts