Glossary

Ep. 14 Dark Matter Part 1 - HD and the Void
In preparation for a future interview with someone who knows much more about astroparticle physics and dark matter than I do, tune in this week for a quick-and-dirty breakdown of a theoretical particle that, if it exists, would clarify a couple of...

We’re getting theoretical here, and not just astronomy theory but particle theory. That’s right, it’s a dark matter podcast! Learn what some astronomers think it is and why other astronomers think there are better explanations for certain nutty galactic phenomena. Hear about MACHOs and WIMPs! Also learn what dark matter is too hot, too cold, too medium, or just right! 

Below the cut are my sources, music credits, a vocab list, a timeline of the scientists I mention, and the transcript of this episode. Tell me what you think I should research next by messaging me here, tweeting at me at @HDandtheVoid, or asking me to my face if you know me in real life. And please subscribe to the podcast on iTunes, rate it and maybe review it, and tell friends if you think they’d like to listen!

(There’s a lot of ever-evolving info about dark matter and I was not able to cover all of it in just one episode, so get excited to hear about dark matter’s friend, dark energy, on November 6th. My thoughts on the episode after that are still the Voyager golden records, space race history, the transit of Venus, the Moon landing, or Edmond Halley. Let me know what you think!)

Glossary

astroparticle physics - the interface between astrophysics and particle physics.

baryons - heaviest particles. Ex. Protons, neutrons. In astroparticle physics, electrons are included in baryonic matter.

bosons - particles that can exist in the same state at the same location at the same time. Ex. Photons, Higgs boson.

cosmic microwave background radiation - the electromagnetic radiation left over from the time of recombination in Big Bang cosmology.

dark matter - a theoretical mass made up of unknown particles that have not been created on Earth. It is used to explain why galaxy clusters have 10x the mass that their light output suggests they would have; why distant stars on the edges of spiral galaxies orbit at the same speed as stars near the center of the galaxy; and the accretion of gases that created galaxies at the beginning of the universe.

fermions - particles that cannot exist in the same state at the same location at the same time. Ex. Protons, neutrons, electrons, leptons.

gravitational lensing - when light from more distant sources passes near a massive star, galaxy, or galaxy cluster and the object’s gravity bends the light like a lens to provide a warped angle view of space.

leptons - lightest particles. Ex. Electrons, neutrinos, tau particles, muons.

MACHO - acronym for MAssive Compact Halo Object. Made of baryonic matter, these objects are a theoretical explanation that takes the place of dark matter and include neutron stars, black holes, or brown dwarfs.

mesons - medium-weight particles. Ex. Pions, kaons.

Planck satellite - a spacecraft that operated from 2009 to 2012. It measured the dark matter content of the universe by looking at the cosmic microwave background radiation and seeing how dark matter clumped and drew the regular matter together to form galaxies.

WIMP - acronym for Weakly Interacting Massive Particle. Theoretical particles that can pass through ordinary matter without affecting it.

Wilkinson Microwave Anisotropy Probe - a spacecraft operating from 2001 to 2010 which measured temperature differences in the cosmic microwave background radiation leftover from the Big Bang.

Transcript

Sources

Fritz Zwicky via the Swedish Morphological Society

Fritz Zwicky via the American Museum of Natural History

Zwicky: “Astronomers are spherical bastards. No matter how you look at them they are just bastards“

Vera Rubin via the American Museum of Natural History

Vera Rubin via Astronomy Magazine

Morton Roberts’ 2007 article on dark matter via Harvard

Particle classifications via PhysicsNet.co.uk

Leptons via Georgia State University, copyright 2001 and all written by Carl “Rod” Nave, who has a teaching award named after him at GSU. Go Rod!

Fermions and bosons via The Particle Adventure

MOND theory by Mordehai Milgrom, published in Scientific American Aug. 2002

Newton’s Second Law of Motion via NASA

MACHOs and WIMPs via NASA

MACHOs and WIMPs via the Encyclopedia of Astronomy and Astrophysics

Bertone, Gianfranco. Behind the Scenes of the Universe: From the Higgs to Dark Matter. Oxford U P: Oxford, 2013.

Tucker, Wallace H. Chandra’s Cosmos: Dark Matter, Black Holes, and Other Wonders Revealed by NASA’s Premier X-Ray Observatory. Smithsonian Books: Washington, D.C, 2017.

“a mysterious force that causes the observed accelerating expansion of the universe” (3).

“sterile neutrinos, axions, asymmetric dark matter, mirror dark matters, and extradimensional dark matter” (23).

“the concentration of dark matter is leveling off, rather than peaking sharply, in the central regions of this cluster” (31).

Timeline

Albert Einstein, German/Austrian (1879-1955)

Edwin Hubble, American (1889-1953)

Walter Baade, German (1893-1960)

Fritz Zwicky, Swiss (1898-1974)

Enrico Fermi, Italian (1901-1954)

Morton S. Roberts, American (1926- )

Vera Rubin, American (1928-2016)

Peter Higgs, English (1929- )

Kent Ford, American (1931- )

Mordehai Milgrom, Israeli (1946- )

Romeel Dave

Rachel Somerville

Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity

Filler Music: ‘Darkmatter’ by Andrew Bird off his album Fingerlings 3

Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught

More Posts from Fillthevoid-with-space and Others

Raising the bar for antimatter exploration

CERN - European Organization for Nuclear Research logo.  March 18, 2017 The absence of antimatter in the universe is a long-standing jigsaw puzzle in physics. Many experiments have been exploring this question by finding asymmetries between particles and their antimatter counterparts. GBAR (Gravitational Behaviour of Antihydrogen at Rest), a new experiment at CERN, is preparing to explore one aspect of this puzzle – what is the effect of gravity on antimatter? While theories exist as to whether antimatter will behave like matter or not, a definitive experimental result is still missing.

Image above: Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form antihydrogen with the antiprotons coming from the ELENA decelerator. (Image: Max Brice/CERN). GBAR will measure the effect of gravity on antihydrogen atoms. Located in the Antiproton Decelerator (AD) hall, GBAR is the first of five experiments that will be connected to the new ELENA deceleration ring. On 1 March, the first component of the experiment was installed – a linear accelerator (linac). In sharp contrast to the LHC’s chain of big accelerators and fast particles, the AD world of antimatter is small and its particles are as slow as they come. The GBAR linac is only 1.2 metres long and it will be used to create positrons, the antimatter equivalent of electrons. The experiment will use antiprotons supplied by ELENA and positrons created by the linac to produce antihydrogen ions. They consist of one antiproton and two positrons, and their positive charge makes them significantly easier to manipulate. With the help of lasers, their velocity will be reduced to half a metre per second. This will allow them to be directed to a fixed point. Then, trapped by an electric field, one of their positrons will be removed with a laser, which will make them neutral again. The only force acting on them at this point will be gravity and they will be free to make a 20-centimetre fall, during which researchers will observe their behaviour. The results might turn out to be very exciting. As the spokesperson of GBAR, Patrice Pérez, explains: “Einstein’s Equivalence Principle states that the trajectory of a particle is independent of its composition and internal structure when it is only submitted to gravitational forces. If we find out that gravity has a different effect on antimatter, this would mean that we still have a lot to learn about the universe.” Five other experiments are based at the Antiproton Decelerator, two of which – AEGIS and ALPHA – are also studying the effect of gravity on antimatter. Note: CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature. The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions. Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States. Related links: GBAR (Gravitational Behaviour of Antihydrogen at Rest): https://gbar.web.cern.ch/GBAR/public/index.html Antiproton Decelerator (AD): https://home.cern/about/accelerators/antiproton-decelerator ELENA: http://home.cern/about/updates/2016/11/new-ring-slow-down-antimatter linear accelerator (linac): http://home.cern/tags/linear-accelerator AEGIS: http://home.cern/about/experiments/aegis ALPHA: https://home.cern/about/experiments/alpha For more information about European Organization for Nuclear Research (CERN), Visit: http://home.cern/ Image (mentioned), Text, Credits: CERN/Iva Raynova. Greetings, Orbiter.ch Full article


Tags
Galaxy NGC 7714 After Collision : Is This Galaxy Jumping Through A Giant Ring Of Stars? Probably Not.

Galaxy NGC 7714 After Collision : Is this galaxy jumping through a giant ring of stars? Probably not. Although the precise dynamics behind the featured image is yet unclear, what is clear is that the pictured galaxy, NGC 7714, has been stretched and distorted by a recent collision with a neighboring galaxy. This smaller neighbor, NGC 7715, situated off to the left of the featured frame, is thought to have charged right through NGC 7714. Observations indicate that the golden ring pictured is composed of millions of older Sun-like stars that are likely co-moving with the interior bluer stars. In contrast, the bright center of NGC 7714 appears to be undergoing a burst of new star formation. NGC 7714 is located about 100 million light years away toward the constellation of the Fish . The interactions between these galaxies likely started about 150 million years ago and should continue for several hundred million years more, after which a single central galaxy may result. via NASA

js


Tags
The 10-billion-year Life Cycle Of The Sun, Illustrated By David Meltzer For National Geographic, May

The 10-billion-year life cycle of the Sun, illustrated by David Meltzer for National Geographic, May 1974.


Tags

It’s international dark sky week! Please enjoy this great Bortle scale.

skyglowproject What sky do you live under? Learn more at SKYGLOWPROJECT.COM


Tags
The Cassini probe Took A Picture Of Saturn That Includes Earth In It!

The Cassini probe took a picture of Saturn that includes Earth in it!

Cassini has actually taken a ton of cool photos of Saturn if you want to check those out in the wake of last week’s planets podcast. 


Tags
No Matter Where You Hang Your Stockings, I Wish You A Very Merry Christmas!

No matter where you hang your stockings, I wish you a very Merry Christmas!


Tags

Why Webb Needs to Chill

Our massive James Webb Space Telescope is currently being tested to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space. 

How cold is it getting and why? Here’s the whole scoop…

Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.  

image

Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.  

image

Why do we want to see infrared light?

Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.

It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.

image

Credit: NASA/IPAC

With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.

image

We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths. 

We call this phenomena  “redshift.”  This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.

image

We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.

Why Webb Needs To Chill

Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).

How do we keep the telescope that cold? 

Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)

image

Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.  

image

Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.

image

How do we make sure it all works in space? 

By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.

image

The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.

image

Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.  

image

What’s next for Webb? 

It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
On This Date In 1902, Greek Archaeologist Valerios Stais Sifted Through Some Artifacts From A Shipwreck

On this date in 1902, Greek archaeologist Valerios Stais sifted through some artifacts from a shipwreck at Antikythera. The wrecked Roman cargo ship was discovered two years earlier, but Stais was the first to notice an intriguing bit of bronze among the treasures. It looked like it might be a gear or wheel. That corroded chunk of metal turned out to be part of the Antikythera Mechanism, an ancient analog astronomical computer.

The Antikythera Mechanism tracked planetary positions, predicted lunar and solar eclipses, and even signaled the next Olympic Games. It was probably also used for mapping and navigation. A dial on the front combines zodiacal and solar calendars, while dials on the back capture celestial cycles. Computer models based on 3-D tomography have revealed more than 30 sophisticated gears, housed in a wooden and bronze case the size of a shoebox.  


Tags
“As The Centuries Unfold, Millions Of Artists Will Live On The Moon And Paint The Moon And Mars As

“As the centuries unfold, millions of artists will live on the moon and paint the moon and Mars as we go out into the universe.”

Today we remember the fourth man to walk on the moon. Astronaut Alan Bean passed away in Houston, at the age of 86.

Bean was the lunar module pilot for Apollo 12 in November 1969, and was commander of Skylab 3 in June 1973. He retired from NASA in 1981 to devote his time to painting.


Tags
Loading...
End of content
No more pages to load
fillthevoid-with-space - Fill the void with... SPACE
Fill the void with... SPACE

A podcast project to fill the space in my heart and my time that used to be filled with academic research. In 2018, that space gets filled with... MORE SPACE! Cheerfully researched, painstakingly edited, informal as hell, definitely worth everyone's time.

243 posts

Explore Tumblr Blog
Search Through Tumblr Tags