Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.
248 posts
Conectado a tierra bajo las estrellas
El MV Alta quedó encallado en el oeste de Cork después de ser un barco fantasma por 18 meses.
Quedó alineado perfecto para el arco de la Vía Láctea. Esta es la tercera vez que el autor tiene suerte de poder fotografiarlo junto a la Vía Láctea.
📸 Keith
Ig: https://instagram.com/mc_snap_agram
📷 Cielo 2x8 filas ISO 6400 15seg 4 disparos en cada panel
Primer plano 14 mm ISO 3200 x 10 30 segundos y apilado
~Félicette
Vía Láctea en Embalse de Barrios de Luna situado en la comarca leonesa de Luna en España.
📅 19 de Julio del 2020.
Crédito: Marcos Alonso
https://instagram.com/elpiratilla
~Antares
Torcal de Antequera es un paraje natural situado en los términos municipales de Antequera y Villanueva de la Concepción de la provincia de Málaga, en Andalucía (España).
Crédito: Juanma Espinosa
https://instagram.com/juanmaespinosa
~Antares
Dodge GT de hormigón de Wolf Vostell en el paraje natural de Los Barruecos.
Crédito: Lancho
https://instagram.com/lancho._
https://lanchofotografia4.webnode.es/
~Antares
Lluvia de meteoros Perseidas.
Una fotografía para el primerplano
17mm - 1/40s - ISO200
Seis fotografías para el cielo
17mm - 15s - ISO5000
Crédito: Oliver
https://instagram.com/fotopasion4k
~Antares
Y más fotos de la lluvia de meteoros Perseidas. ¿Alguien más logro capturar alguna? Compartan sus fotos en esta publicación. La aparente estrella que se ve en la foto es Júpiter.
Crédito: Tero Marin
https://www.teromarin.com
~Antares
Esta madrugada del día 13 de agosto tenemos la lluvia de meteoros Perseidas, la cual proviene de los rastros de polvo y rocas que deja tras de si el cometa Swift-Tuttle. Se espera que tenga una actividad de 100 meteoros por hora, aprovechando que la luna esta en un 24% de iluminosidas, la visibilidad de este fenómeno será espectacular.
Sony A7iii
ISO3200
20mm
20 seg
F1.8
Disparo con temporizador (10 seg)
Crédito: Julio C. Lozoya
https://www.facebook.com/jclozoya
@julio_c_lozoya
~Antares
Parque Nacional Yellowstone
Exif:
Sony a7íii, Sony 16-35 GM, ÍOptron Skytracker Pro
Sky: 16mm, f/2.8, IS01000,120 sec. (tracked)
Foreground: 16mm, f/2.8, IS01000,300 sec. (untracked)
Crédito: Kelly Teich
https://instagram.com/kelly.teich
~Antares
Playa de Campiecho ubicada en el occidente del Principado de Asturias.
Este es el resultado de combinar diferentes fotografías, 4 minutos de exposición del primer plano o foreground, un staking de 10 para el cielo y 4 fotografías para las luces y el sujeto.
Nikon D850 - Nikkor 20 mm - Haida Clear Night
Crédito: Pellegrini Stefano Photography.
https://instagram.com/pels_photo
~Antares
Senda estelar alrededor del polo norte celeste. La estrella en el centro de los arcos celestiales concentricos es Polaris.
Imagen desde Bayanhaote, en el interior de Mongolia de China.
Crédito: Jeff Dai
https://instagram.com/jeffdaiphoto
~Antares
Tránsito de la Estación Espacial Tiangong
Se utilizo un refractor de 8 ′′ a lo largo del Mar Mediterráneo, para este tránsito solar de 1/2 segundo de la nueva Estación Espacial Tiangong de China, que incluye los 3 módulos con sus paneles solares y sin duda el brazo robótico. Pueden acceder al video de este tránsito a través de su canal de YouTube o el siguiente link:
https://www.youtube.com/watch?v=Bp3jCKvX_tY
Credito: Thierry Legault
https://www.facebook.com/thierry.legault.5
~Antares
Tres cimas de Lavaredo son tres distintos picos con formas de merlones localizados en las regiones italianas de Trentino-Alto Adigio y Véneto.
Panorama: Sony A7 III Sony SEL -1635GM
Crédito: Stefan Liebermann
https://instagram.com/stefanliebermannphoto
~Antares
Vía Láctea y estrella fugaz desde Tenerife, España.
Crédito: Stefan Liebermann
https://instagram.com/stefanliebermannphoto
~Antares
Watching our Perseverance rover safely land on the surface of Mars is the kind of historic feat that gets our adventure-loving hearts racing.
Launching and landing rovers on Mars requires overcoming challenges like defying gravity on two planets, surviving the extreme heat of atmospheric entry, and avoiding rocky obstacles. This takes more than just rocket science – it takes incredible software too.
Did you know that some of the same tried and tested software that helped ensure a safe arrival for Perseverance (and its predecessor, Curiosity) can be downloaded – by you...for free...right now?
Our 2021-22 Software Catalog is full of codes made for space that can be used by entrepreneurs, teachers, gamers, or just about anyone. Whether you are curious about the Martian atmosphere, want to visualize the inside of a volcano, or have an application we’ve never even considered, our software may be able to help. Check out our full site, updated regularly with the latest codes available for download.
Here are a few examples of what you could do with our software!
To prepare for exactly what a spacecraft will face on landing day, no matter the location scientists choose, we created software that simulates the Martian atmosphere. The code, Mars (GRAM), is now available to anyone.
We also have a version that simulates Earth's atmosphere, allowing users (especially those in the world of drone design) a way to replicate and design for, potentially dangerous conditions without ever stepping away from the computer.
Originally developed for scientists and engineers working on the Curiosity rover mission, OnSight allowed the team a virtual way to walk on and look around Mars. Using an immersive display, such as a virtual reality headset, scientists could see the Red Planet the way a rover would.
This software can also be used to provide virtual experiences of places here on Earth, such as caves and lava fields.
When preparing for complex space missions, like the upcoming Mars Sample Return mission, it’s crucial to examine how different elements, independently and collectively, impact the probability of success.
But risk management has become an important tool for businesses of all disciplines, from engineering to accounting – and the Space Mission Architecture and Risk Analysis Tool (SMART) could help.
Sound interesting? The NASA software catalog has these and more than 800 additional codes ready for download.
You can also follow our Technology Transfer program on Twitter to learn more about software and technology that can be put to use on Earth.
Make sure to follow us on Tumblr for your regular dose of space!
Our Nancy Grace Roman Space Telescope team recently flight-certified all 24 of the detectors the mission needs. When Roman launches in the mid-2020s, the detectors will convert starlight into electrical signals, which will then be decoded into 300-megapixel images of huge patches of the sky. These images will help astronomers explore all kinds of things, from rogue planets and black holes to dark matter and dark energy.
Eighteen of the detectors will be used in Roman’s camera, while another six will be reserved as backups. Each detector has 16 million tiny pixels, so Roman’s images will be super sharp, like Hubble’s.
The image above shows one of Roman’s detectors compared to an entire cell phone camera, which looks tiny by comparison. The best modern cell phone cameras can provide around 12-megapixel images. Since Roman will have 18 detectors that have 16 million pixels each, the mission will capture 300-megapixel panoramas of space.
The combination of such crisp resolution and Roman’s huge view has never been possible on a space-based telescope before and will make the Nancy Grace Roman Space Telescope a powerful tool in the future.
Learn more about the Roman Space Telescope!
Make sure to follow us on Tumblr for your regular dose of space!
Otra fotografía recordando al cometa NEOWISE desde Little Sable Point el cual es un faro ubicado en la peninsula inferior del estado de Michigan.
Crédito: Phil Sisto
https://instagram.com/p.sisto.images
~Antares
Las colas del cometa NEOWISE tomada el 22 de julio de 2020. La segunda imagen muestra un primer plano del coma y el falso núcleo del cometa. Fue capturado con un smartphone a través del telescopio C11 EdgeHD.
Crédito: Sebastián Voltmer
https://instagram.com/sebastianvoltmer
https://www.voltmer.de/
~Antares
NEOWISE en Little Sable Lighthouse en Mears Michigan.
Canon 6 D Mark II
Sigma 70-200mm @119mm
f / 2.8
4 segundo
IS0 6400
Crédito: Jamie Seidel
https://instagram.com/uh82nvme
www.facebook.com/uh82nvmy_photography
~Antares
Vía Láctea sobre Santuario de Santa Luzia
Crédito: Sebastien Pontoizeau.
https://instagram.com/alasy_photography
https://www.oceanculture.life/ocl/sebastien-pontoizeau
~Antares
Cometa NEOWISE, la cola azul es debido a los vientos solares cargados. La apariencia trenzada de la cola proviene de diferentes tasas de iones azules expulsados del núcleo, así como de un constante cambio de vientos solares, comenta el autor en la foto. La otra cola de la derecha es su principal cola de polvo.
EXIF:
Nikon Z7 on Redcat (250 mm)
Sky watcher Star Adventurer
30 minutos de disparos integrados en f/5, ISO640.
Crédito: Bryony Richards and Eric Benedetti
https://instagram.com/utahastrophotography
https://www.utahastrophotography.com/
~Antares
Via Láctea sobre Grosseto, Italia.
El autor nos relata que estuvo jugando con las luces para poder obtener el tipo de iluminación que el deseaba. Mientras hacía eso, el cielo se logró despejar para poder tomar captura de la Vía Láctea, ya que cuando llego al lugar, no era bueno el pronóstico. Para saber más detalles de la foto, los invitamos al perfil del autor en instagram.
Nikon D850 - Nikkor 20mm f1.8
Crédito: Pellegrini Stefano Photography
https://instagram.com/pels_photo
~Antares
Para este trabajo al autor le tomó aproximadamente 3 meses.
Consta de 9 fotografías de nuestro satélite lunar en cada una de sus diferentes fases lunares; durante un poco más de 90 días se realizaron casi 100 tomas en donde se seleccionó 9 días correspondientes a 9 fases lunares distintas.
Se llevó tanto tiempo debido a dificultades meteorológicas y la duración de la lunación (ciclo lunar) completa que es de 29.531 días.
📸 Camilo Morales
https://instagram.com/dreamland_cm
~Félicette
Sunkissed
📸 Daniel Borja
Ig: https://instagram.com/danborjaa
🗓️Junio 16, 2021
~Félicette
"The Red Gazer"
Vía Láctea desde el desierto de Sonora.
Crédito: Evan Amos
https://instagram.com/evanamos
https://www.evanamos.com/
~Antares
The next time you see fireworks, take a moment to celebrate the cosmic pyrotechnics that made them possible. From the oxygen and potassium that help fireworks burn to the aluminum that makes sparklers sparkle, most of the elements in the universe wouldn’t be here without stars.
From the time the universe was only a few minutes old until it was about 400 million years old, the cosmos was made of just hydrogen, helium and a teensy bit of lithium. It took some stellar activity to produce the rest of the elements!
Stars are element factories
Even after more than 13 billion years, the hydrogen and helium that formed soon after the big bang still make up over 90 percent of the atoms in the cosmos. Most of the other elements come from stars.
Stars began popping into the universe about 400 million years after the big bang. That sounds like a long time, but it’s only about 3% of the universe’s current age!
Our Nancy Grace Roman Space Telescope will study the universe’s early days to help us learn more about how we went from a hot, soupy sea of atoms to the bigger cosmic structures we see today. We know hydrogen and helium atoms gravitated together to form stars, where atoms could fuse together to make new elements, but we're not sure when it began happening. Roman will help us find out.
The central parts of atoms, called nuclei, are super antisocial – it takes a lot of heat and pressure to force them close together. Strong gravity in the fiery cores of the first stars provided just the right conditions for hydrogen and helium atoms to combine to form more elements and generate energy. The same process continues today in stars like our Sun and provides some special firework supplies.
Carbon makes fireworks explode, helps launch them into the sky, and is even an ingredient in the “black snakes” that seem to grow out of tiny pellets. Fireworks glow pink with help from the element lithium. Both of these elements are created by average, Sun-like stars as they cycle from normal stars to red giants to white dwarfs.
Eventually stars release their elements into the cosmos, where they can be recycled into later generations of stars and planets. Sometimes they encounter cosmic rays, which are nuclei that have been boosted to high speed by the most energetic events in the universe. When cosmic rays collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron, which can make fireworks green, and beryllium, which can make them silver or white!
Since massive stars have even stronger gravity in their cores, they can fuse more elements – all the way up to iron. (The process stops there because instead of producing energy, fusing iron is so hard to do that it uses up energy.)
That means the sodium that makes fireworks yellow, the aluminum that produces silver sparks (like in sparklers), and even the oxygen that helps fireworks ignite were all first made in stars, too! A lot of these more complex elements that we take for granted are actually pretty rare throughout the cosmos, adding up to less than 10 percent of the atoms in the universe combined!
Fusion in stars only got us through iron on the periodic table, so where do the rest of our elements come from? It’s what happens next in massive stars that produces some of the even more exotic elements.
Dying stars make elements too!
Once a star many times the Sun’s mass burns through its fuel, gravity is no longer held in check, and its core collapses under its own weight. There, atoms are crushed extremely close together – and they don’t like that! Eventually it reaches a breaking point and the star explodes as a brilliant supernova. Talk about fireworks! These exploding stars make elements like copper, which makes fireworks blue, and zinc, which creates a smoky effect.
Something similar can happen when a white dwarf star – the small, dense core left behind after a Sun-like star runs out of fuel – steals material from a neighboring star. These white dwarfs can explode as supernovae too, spewing elements like the calcium that makes fireworks orange into the cosmos.
When stars collide
White dwarfs aren’t the only “dead” stars that can shower their surroundings with new elements. Stars that are too massive to leave behind white dwarfs but not massive enough to create black holes end up as neutron stars.
If two of these extremely dense stellar skeletons collide, they can produce all kinds of elements, including the barium that makes fireworks bright green and the antimony that creates a glitter effect. Reading this on a phone or computer? You can thank crashing dead stars for some of the metals that make up your device, too!
As for most of the remaining elements we know of, we've only seen them in labs on Earth so far.
Sounds like we’ve got it all figured out, right? But there are still lots of open questions. Our Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies. That’s important because the right materials had to come together to form the air we breathe, our bodies, the planet we live on, and yes – even fireworks!
So when you’re watching fireworks, think about their cosmic origins!
Learn more about the Roman Space Telescope at: https://roman.gsfc.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
La vía láctea desde Bivacco Ferrario Grignetta, Italia.
Crédito: Erik Colombo
https://instagram.com/erikcolombophotographer
~Antares