He's Unaware Of A Lot Of Things, But He Does Intentionally Choose To Align Himself With The Police --

He's unaware of a lot of things, but he does intentionally choose to align himself with the police -- I am inclined to say that he willingly incarnates and represents the Hunt.

Would Javert from Les Misèrables become an avatar of the Hunt

Would Javert From Les Misèrables Become An Avatar Of The Hunt
Tags

More Posts from Le-blanc-et-la-noire and Others

10 months ago

Triangle Tuesday 3: The orthocenter, the Euler line, and orthocentric systems

Previously, we have looked at two different ways to mark a point in a triangle. First, we drew cevians (lines from the vertices) to the midpoints of the sides and found that they all cross at a point, which is the centroid. Then we tried drawing perpendiculars to the sides from the midpoints, and those all met at the circumcenter. And you could do this with any point on the side of a triangle -- draw a cevian to it, or a perpendicular from it, and see what happens.

This time, though, we're going to do both. That is, we're going to work with the cevians that also form perpendiculars to the sides. These are the altitudes, which run from a vertex to the nearest point on the opposite side, called the foot of the altitude. The three altitudes all meet at a point H, and that's the orthocenter. (The letter H has been used to mark the orthocenter since at least the late 19th century. I believe it's from the German Höhenschnittpunkt, "altitude intersection point.") Anyway, let's prove that the orthocenter exists.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Theorem: the three altitudes of a triangle coincide.

Here's a very simple proof that the three altitudes coincide. It relies on the existence of the circumcenter, which we already proved before. Given a triangle ABC, draw a line through A parallel to the opposite side BC. Do the same at B and C. These lines cross at D, E, and F and form the antimedial triangle (in blue).

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Then the altitudes of ABC are also the perpendicular bisectors of DEF. We proved before that perpendicular bisectors all meet at a point, therefore altitudes do as well.

That was easy. Let's do it again, but in a different way. It's not quite as simple, but it includes a large bonus.

Theorem: the three altitudes of a triangle coincide at a point colinear with the circumcenter and centroid, and GH = 2 GO.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Let's take triangle ABC, and let F be the midpoint of side AB. Then mark two points that we already know, the circumcenter O and the centroid G. We'll also draw the median (green) and the perpendicular bisector (blue) that run through F, leaving the other ones out to avoid cluttering the picture.

We already know from our look at the centroid that G cuts segment FC at a third of its length, so GC = 2GF. Let's extend segment OG in the direction of G by twice its length out to a point we'll label H, so that GH = 2GO.

Now consider the two triangles GOF and GHC. By construction, their two blue sides are in the ratio 1:2, and the same for their two black sides. They also meet in vertical angles at their common vertex G. So by side-angle-side, the triangles are similar, and it follows that HC is parallel to OF, and therefore perpendicular to AB. So H lies on the altitude from H to side AB.

By analogous construction, we can show that H also lies on the other two altitudes. So not only have we proved that the altitudes coincide, but also that O, G, and H all lie on a line, and furthermore that G is located one third of the way from O to H, in any triangle.

This proof is due to Leonard Euler, and the line OGH is called the Euler line. Not only these three points but many others as well fall on this line, which we will get to later on.

Let's look at some more properties of the orthocenter and the feet of the altitudes. I'm just going to look at the case of an acute triangle for now, and show how this extends to the obtuse case later.

Theorem: two vertices of a triangle and the feet of the altitudes from those vertices are concyclic.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Proof is easy: the two right triangles AHcC and AHaC share segment AC as a hypotenuse. Therefore AC is a diameter of the common circumcircle of AHcC and AHaC (following from Thales's theorem).

(Incidentally, look at the angle formed by the blue segment and the altitude CHc. It subtends the same arc as angle CAHa, so (by the inscribed angle theorem again) they must be equal. That's not a part of this theorem, so just tuck that fact away for a moment.)

Theorem: a vertex, the two adjacent feet of the altitudes, and the orthocenter are concyclic.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Same idea, but now the right triangles are AHcH and AHbH, and AH is the diameter of the common circumcircle.

(And incidentally, look at the angle formed by the new blue line and the altitude CHc. It subtends the same arc as HbAH, which is same angle as CAHa. So those angles must be equal too. Since both angles between a blue line and the altitude CHc are equal to the same thing, they are equal to each other. Again, not a part of this theorem, just something I wanted to note.)

So those are some interesting concyclicities, but now let's look at the pedal triangle of the orthocenter, which is called the orthic triangle.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Oh, hey, it's made up blue lines, just like the ones we were talking about. And we proved that the two longest blue lines make equal angles with the altitude between them. By symmetry, we can prove the same thing about all the angles made by the blue lines. So that means

Theorem: two sides of the orthic triangle make equal angles with the altitude between them.

Another way to say this is that the altitudes are the angle bisectors of the orthic triangle. And I admit that was kind of a roundabout way to introduce the orthic triangle, but I think it makes the proof of this property easier to follow.

Two other properties of the orthic triangle immediately follow from this:

In an acute triangle, the inscribed triangle with the shortest perimeter is the orthic triangle

and

In an acute triangle, the orthic triangle forms a triangular closed path for a beam of light reflected around a triangle

which are two ways of saying the same thing.

But those two properties only hold for acute triangles. What happens to the orthic triangle in an obtuse triangle? Let's push point C downward to make triangle ABC obtuse and see what happens. To make things clear, I'm going to extend the sides of ABC and the altitudes from line segments into lines. Here's the before:

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

And here's the after:

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

The orthocenter has moved outside of triangle ABC, and two of the altitudes have their feet on extensions of the sides of ABC rather than on the segments AC and BC. The orthic triangle now extends outside ABC, and certainly isn't the inscribed triangle with the shortest perimeter any more.

But look at it another way. We now have an acute triangle ABH, and the line HHc is an altitude of both the obtuse triangle ABC and the acute triangle ABH. Meanwhile, lines AC and BC have become altitudes of ABH.

So what we have is essentially the same acute triangle with two swaps: point C trades places with H, and Ha trades places with Hb. That means that our two theorems about concyclic points morph into each other as triangle ABC switches between acute and obtuse. Here's an animation to show the process:

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

And this is why I didn't bother with the obtuse case above -- each theorem of concyclicity is the obtuse case of the other.

So if we can just exchange the orthocenter with one of the vertices, what does this mean for their relationship? If you are given a group of vertices and lines, how can you tell which one is the orthocenter and which one are the vertices? Well, you can't.

Theorem: Given an acute or obtuse triangle ABC and its orthocenter H, A is the orthocenter of triangle BCH, B is the orthocenter of ACH, and C is the orthocenter of ABH.

The proof comes from consulting either of the "before" and "after" figures above. Take any three lines that form a triangle, red or black. The other three lines are then the altitudes of that triangle. The three feet are where a red and black line meet perpendicularly, so they are the same for all four possible triangles, which means all four share the same orthic triangle.

(Of course, if ABC is a right triangle, then we get a degenerate case, as you can see from the gif at the moment when C and H meet.)

Such an arrangement of four points is called an orthocentric system. Of the four points, one is always located inside an acute triangle formed by the other three, and it's conventional to label the interior one H and the others ABC.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

Orthocentric systems pop up all over the place in triangles, so expect to see more of them as we go along. Now, let me do one little lemma about altitudes, and then I'll show something cool about orthocentric systems.

Lemma: the segment of an altitude from the orthocenter to a side of the triangle is equal to the extension of the altitude from the side to the circumcircle.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

We can show this with just a little shuffling of angle identities. Extend altitude CHc to meet the circumcircle at C'. The angles CAB and CC'B, labeled in red, subtend the same arcs, so they are equal. Triangle ABHb is a right triangle, so angle HbBA, in blue, is complementary to it. The same is true for the right triangle C'BHc, so the two angles labeled in blue are equal. Then by angle-side-angle, triangles BHcH and HHcC' are congruent, and segment HHc = HcC'.

By the same argument, we can show that triangle AHHc is congruent to AC'Hc, which leads us into the next bit.

Theorem: all the circumcircles of the triangles of an orthocentric system are the same size.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

The blue triangle has the same circumcircle as triangle ABC. From the foregoing, the blue and green triangles are congruent. Therefore their circumcircles are the same size as well. The same argument works for ACH and BCH.

So here is an orthocentric system with its four circumcircles.

Triangle Tuesday 3: The Orthocenter, The Euler Line, And Orthocentric Systems

The four circumcenters O, Oa, Ob, and Oc form another orthocentric system, congruent to the first one.

If you found this interesting, please try drawing some of this stuff for yourself! You can use a compass and straightedge, or software such as Geogebra, which I used to make all my drawings. You can try it on the web here or download apps to run on your own computer here.


Tags
2 months ago

I'm glad that people are still having fun on tumblr even after we found out about the frightening ghoul that reblogs posts but doesn't say anything

this is good and correct. that scene is in fact extremely horny

george-orwell.org
The complete works of george orwell, searchable format. Also contains a biography and quotes by George Orwell

My toxic trait is finding O'Brien's interrogation of Winston to be extremely horny


Tags
5 months ago
I Have Tried For Years To Discover Something, Anything, About This Card With No Success.

I have tried for years to discover something, anything, about this card with no success.


Tags
Sygol Framed Poll (handle With Care), 2024 Mixed Media On Tumblr Post
Sygol Framed Poll (handle With Care), 2024 Mixed Media On Tumblr Post

sygol framed poll (handle with care), 2024 mixed media on tumblr post

3 months ago

the fact that pro-monarchy arguments have degenerated, over the past few centuries, from “the king rules by divine right and is accountable to nobody but god”, to “uhm the royals generate a lot of income from tourism” will never stop being extremely funny to me


Tags
7 months ago

Nur für mich (“On My Own" in German)

For the Lyrics Across Languages project: Below the cut are the German lyrics to On My Own with a translation. (Link: German lyrics masterpost; multilingual lyrics masterpost.)

Keep reading


Tags
8 months ago

That's Danish; IKEA is Swedish.

the bluetooth chip in my beloved ikea eneby speaker (with the gay pride front cover) decided abruptly to stop connecting to devices today TT__TT i cracked the thing open of course and had a look but unplugging and replugging various cables had no effect; next course of action is probably to try to resolder the bluetooth daughter board (which i HAVE identified, thank you ifixit) except i still haven't unpacked my soldering iron post move and now it's buried in the shed in one of several boxes all of which are behind the woodworking bench and like three bikes. fortunately the 3.5mm jack still works so i THINK my strat is going to be to just fucking plug in one of those bluetooth 3.5mm adapters until i can get my tools unfucked enough to hopefully fix it properly. and of course i can't just get a replacement because ikea has discontinued the eneby because fuck you that's why


Tags
4 months ago

Bad analogy : Like playing badminton with a tennis racquet on a squash court :: Worse analogy : Like playing worseminton with a tennis racquet on a squash court


Tags
yes

I'm not beating myself up for no reason, I have to acausally incentivize my past self not to have fucked up

Loading...
End of content
No more pages to load
  • elevenweirdthoughts
    elevenweirdthoughts liked this · 2 months ago
  • croi-en
    croi-en liked this · 3 months ago
  • thewindsatnighthowl
    thewindsatnighthowl liked this · 4 months ago
  • scartalon13
    scartalon13 liked this · 6 months ago
  • ghost-of-fire-and-sea
    ghost-of-fire-and-sea reblogged this · 7 months ago
  • ghost-of-fire-and-sea
    ghost-of-fire-and-sea liked this · 7 months ago
  • scalls
    scalls liked this · 1 year ago
  • snowwyvernrider98
    snowwyvernrider98 reblogged this · 1 year ago
  • acedragontype
    acedragontype liked this · 1 year ago
  • baketothefuture
    baketothefuture reblogged this · 1 year ago
  • everything-is-connected
    everything-is-connected reblogged this · 1 year ago
  • ursiidaexviii
    ursiidaexviii liked this · 1 year ago
  • wouldtheybecomeafearavatar
    wouldtheybecomeafearavatar reblogged this · 1 year ago
  • who-needs-words
    who-needs-words liked this · 1 year ago
  • le-blanc-et-la-noire
    le-blanc-et-la-noire reblogged this · 1 year ago
  • your-villainous-neighbour
    your-villainous-neighbour liked this · 1 year ago
  • clover-patches
    clover-patches reblogged this · 1 year ago
  • clover-patches
    clover-patches liked this · 1 year ago
  • thatoneer
    thatoneer reblogged this · 1 year ago
  • thatoneer
    thatoneer liked this · 1 year ago
  • vampire-mina
    vampire-mina liked this · 1 year ago
  • percivald3rolo
    percivald3rolo reblogged this · 1 year ago
  • percivald3rolo
    percivald3rolo liked this · 1 year ago
  • oldbooksandnewmusic
    oldbooksandnewmusic reblogged this · 1 year ago
  • cyraniadebergerac
    cyraniadebergerac reblogged this · 1 year ago
  • cyraniadebergerac
    cyraniadebergerac liked this · 1 year ago
  • ducksoup1933
    ducksoup1933 liked this · 1 year ago
  • addicted-to-12th-intro
    addicted-to-12th-intro liked this · 1 year ago
  • slothbless
    slothbless liked this · 1 year ago
  • thesesnakesaremyfriends
    thesesnakesaremyfriends liked this · 1 year ago
  • apalatablevastness
    apalatablevastness liked this · 1 year ago
  • anaisimoo
    anaisimoo liked this · 1 year ago
  • rescue-ram
    rescue-ram reblogged this · 1 year ago
  • funck
    funck liked this · 1 year ago
  • pilferingapples
    pilferingapples reblogged this · 1 year ago
  • wouldtheybecomeafearavatar
    wouldtheybecomeafearavatar reblogged this · 1 year ago
le-blanc-et-la-noire - not a bot just shy
not a bot just shy

74 posts

Explore Tumblr Blog
Search Through Tumblr Tags