Laravel

Earth - Blog Posts

5 years ago

Astronaut out! Thank you for all the amazing questions.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What's something you didn't know about being an astronaut before you actually became one? Do you have any words of advice for young astronauts?


Tags
5 years ago

What was your first thought when you first saw earth from space? And what realizations did you have?


Tags
5 years ago

As an astronaut who has been on a spacewalk before, what does the all-woman spacewalk mean to you?


Tags
5 years ago

How could your research in diseases help missions to the Moon, Mars and other places in our solar system?


Tags
5 years ago

3, 2, 1 LIFTOFF! Astronaut Kate Rubins is here answering your questions during this Tumblr Answer Time. Tune in and enjoy. đŸš€đŸ‘©â€đŸš€


Tags
5 years ago
NASA Spotlight: Brandon Rodriguez, Jet Propulsion Laboratory Education Specialist 

NASA Spotlight: Brandon Rodriguez, Jet Propulsion Laboratory Education Specialist 

Brandon Rodriguez is an education specialist at our Jet Propulsion Laboratory (JPL) in Pasadena, California where he provides resources and training to K-12 schools across the Southwest. Working with a team at JPL, he develops content for classroom teachers, visits schools and speaks with students and trains future teachers to bring NASA into their classroom. When he’s not in the classroom, Brandon’s job takes him on research expeditions all around the world, studying our planet’s extreme environments.  

Fun fact: Brandon wakes up every morning to teach an 8 a.m. physics class at a charter school before heading to JPL and clocking in at his full time job. When asked why? He shared, “The truth is that I really feel so much better about my role knowing that we’re not ‘telling’ teachers what to do from our ivory tower. Instead, I can “share” with teachers what I know works not just in theory, but because I’m still there in the classroom doing it myself.” - Brandon Rodriguez

Brandon took time from exciting the next generation of explorers to answer some questions about his life and his career: 

What inspired you to work in the educational department at NASA?

I was over the moon when I got a call from NASA Education. I began my career as a research scientist, doing alternative energy work as a chemist. After seven years in the field, I began to feel as if I had a moral responsibility to bring access to science to a the next generation. To do so, I quit my job in science and became a high school science teacher. When NASA called, they asked me if I wanted a way to be both a scientist and an educator- how could I resist?

image

You were born in Venezuela and came to the U.S. when you were 12 years old. Can you tell us the story of why and how you came to America?

I haven't been back to Venezuela since I was very young, which has been very difficult for me. Being an immigrant in the USA sometimes feels like you're an outsider of both sides: I'm not truly Latin, nor am I an American. When I was young, I struggled with this in ways I couldn't articulate, which manifested in a lot of anger and got me in quite a bit of trouble. Coming to California and working in schools that are not only primarily Latinx students, but also first generation Latinx has really helped me process that feeling, because it's something I can share with those kids. What was once an alienating force has become a very effective tool for my teaching practice.

Does your job take you on any adventures outside of the classroom and if so, what have been your favorite endeavors?

I'm so fortunate that my role takes me all over the world and into environments that allow to me to continue to develop while still sharing my strengths with the education community. I visit schools all over California and the Southwest of the USA to bring professional development to teachers passionate about science. But this year, I was also able to join the Ocean Exploration Trust aboard the EV Nautilus as we explored the Pacific Remote Island National Marine Monument. We were at sea for 23 days, sailing from American Samoa to Hawaii, using submersible remotely operated vehicles to explore the ocean floor. 

image

Image Credit: Nautilus Live 

We collected coral and rock samples from places no one has ever explored before, and observed some amazing species of marine creatures along the way.

image

Image Credit: Nautilus Live 

What keeps you motivated to go to work every day?

There's no greater motivation than seeing the product of your hard work, and I get that everyday through students. I get to bring them NASA research that is "hot off the press" in ways that their textbooks never can. They see pictures not online or on worksheets, but from earlier that day as I walked through JPL. It is clearly that much more real and tangible to them when they can access it through their teacher and their community.

image

Do you have any tips for people struggling with their science and math classes? 

As someone who struggled- especially in college- I want people to know that what they struggle with isn't science, it's science classes. The world of research doesn't have exams; it doesn't have blanks to be filled in or facts to be memorized. Science is exploring the unknown. Yes, of course we need the tools to properly explore, and that usually means building a strong academic foundation. But it helped me to differentiate the end goal from the process: I was bad at science tests, but I wanted to someday be very good at science. I could persevere through the former if it got me to the latter.

If you could safely visit any planet, star, or solar system, where would you visit and what would you want to learn?

Europa, without a doubt. Imagine if we found even simple life once more in our solar system- and outside of the habitable zone, no less. What would this mean for finding life outside of our solar system as a result? We would surely need to conclude that our sky is filled with alien worlds looking back at us.

image

Is there a moment or project that you feel defined (or significantly impacted) your career up to today?

While I never worked closely with the mission, Insight was a really important project for me. It's the first time while at JPL I was able to see the construction, launch and landing of a mission.

If you could name a spaceship, what would you name it?

For as long as I can remember, I've been watching and reading science fiction, and I continue to be amazed at how fiction informs reality. How long ago was it that in Star Trek, the crew would be handing around these futuristic computer tablets that decades later would become common iPads?  In their honor, I would be delighted if we named a ship Enterprise.

Thanks so much Brandon! 

Additional Image Credit: MLParker Media

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

We’re On a Mission to Study The Zone Where Earth Meets Space!

We’re launching ICON — short for Ionospheric Connection Explorer — a mission to explore the dynamic region where Earth meets space: the ionosphere!

image

Earth’s ionosphere stretches from 50 to 400 miles above the ground, overlapping the top of our atmosphere and the very beginning of space. The Sun cooks gases there until they lose an electron (or two or three), creating a sea of electrically charged particles. But, the ionosphere also responds to weather patterns from Earth rippling up. These changes are complex and tricky to understand.

image

That’s why we’re launching ICON! Changes in the ionosphere can affect astronauts, satellites and communications signals we use every day, like radio or GPS. Understanding these changes could help us eventually predict them — and better protect our technology and explorers in space.

image

ICON will track changes in the ionosphere by surveying airglow. It’s a natural feature of Earth’s that causes our atmosphere to constantly glow. The Sun excites gases in the upper atmosphere, so they emit light. From 360 miles above Earth, ICON will photograph airglow to measure the ionosphere’s winds, composition and temperature. ICON also carries an instrument that will capture and measure the particles directly around the spacecraft.

image

ICON is scheduled to launch on Oct. 10, on a Northrop Grumman Pegasus XL rocket. The night of launch, the rocket is flown up to the sky by Northrop Grumman’s L-1011 Stargazer airplane, which takes off from Cape Canaveral Air Force Station in Florida. From 40,000 feet above the open ocean, the Pegasus XL rocket drops from the plane and free-falls for about five seconds before igniting and carrying ICON into orbit.   

image

NASA TV coverage of the launch starts at 9:15 p.m. EDT on Oct. 10 at nasa.gov/live. You can also follow along on Twitter, Facebook or at nasa.gov/icon.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Protecting our Home Planet 🌎

image

Did you ever wonder how we spots asteroids that may be getting too close to Earth for comfort? Wonder no more. Our Planetary Defense Coordination Office does just that. Thanks to a variety of ground and space based telescopes, we’re able to detect potentially hazardous objects so we can prepare for the unlikely threat against our planet. 

What is a near-Earth object?

image

Near-Earth objects (NEOs) are asteroids and comets that orbit the Sun, but their orbits bring them into Earth’s neighborhood – within 30 million miles of Earth’s orbit.

These objects are relatively unchanged remnant debris from the solar system’s formation some 4.6 billion years ago. Most of the rocky asteroids originally formed in the warmer inner solar system between the orbits of Mars and Jupiter, while comets, composed mostly of water ice with embedded dust particles, formed in the cold outer solar system.

Who searches for near-Earth objects?

image

Our Near-Earth Object (NEO) Observations Program finds, tracks and monitors near-Earth asteroids and comets. Astronomers supported by the program use telescopes to follow up the discoveries to make additional measurements, as do many observatories all over the world. The Center for Near-Earth Object Studies, based at our Jet Propulsion Laboratory, also uses these data to calculate high-precision orbits for all known near-Earth objects and predict future close approaches by them to Earth, as well as the potential for any future impacts.

How do we calculate the orbit of a near-Earth object?

image

Scientists determine the orbit of an asteroid by comparing measurements of its position as it moves across the sky to the predictions of a computer model of its orbit around the Sun. The more observations that are used and the longer the period over which those observations are made, the more accurate the calculated orbit and the predictions that can be made from it.

How many near-Earth objects have been discovered so far?

image

At the start of 2019, the number of discovered NEOs totaled more than 19,000, and it has since surpassed 20,000. An average of 30 new discoveries are added each week. More than 95 percent of these objects were discovered by NASA-funded surveys since 1998, when we initially established its NEO Observations Program and began tracking and cataloguing them.

Currently the risk of an asteroid striking Earth is exceedingly low, but we are constantly monitoring our cosmic neighborhood. Have more questions? Visit our Planetary Defense page to explore how we keep track of near-Earth objects. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What would happen if a Black hole would be near the earth? What would be the consequences to humans?


Tags
5 years ago

What aspect of spaceflight always blows your mind, even after all this time?


Tags
5 years ago

The Smoke From a (Not-so) Distant Fire

Flying directly through thick plumes of smoke may seem more harrowing than exciting. But for members of the CAMP2Ex science team, the chance to fly a P-3 Orion straight through clouds of smoke billowing off fires from Borneo this week was too good an opportunity to pass up.

The Smoke From A (Not-so) Distant Fire

CAMP2Ex stands for the Cloud, Aerosol and Monsoon Processes in the Philippines Experiment. The 2, by the way, is silent.

The Smoke From A (Not-so) Distant Fire

It’s a field campaign based out of Clark in the Philippines, flying our P-3, a Learjet and collaborating with researchers on the research vessel Sally Ride to understand how tiny particles in the atmosphere affect cloud formations and monsoon season.

The Smoke From A (Not-so) Distant Fire

The tiny aerosol particles we’re looking at don’t just come from smoke. Aerosol particles also come from pollution, billowing dust and sea salt from the ocean. They can have an outsized effect on weather and climate, seeding clouds that bring rain and altering how the atmosphere absorbs the Sun’s heat.

The Smoke From A (Not-so) Distant Fire

The smoke we were flying Monday came from peat fires, burning through the soil. That’s pretty unusual — the last time Borneo had these kind of fires was in 2015, so it was a rare opportunity to sample the chemistry of the smoke and find out what’s mixing with the air.

The Smoke From A (Not-so) Distant Fire

The planes are loaded with instruments to learn more about aerosol particles and the makeup of clouds, like this high-speed camera that captures images of the particles in flight. 

The Smoke From A (Not-so) Distant Fire

One instrument on the plane collects droplets of cloud water as the plane flies through them, and on the ground, we test how acidic and what kind of particles form the cloud drops. 

The Smoke From A (Not-so) Distant Fire

All of these measurements are tools in improving our understanding of the interaction between particles in the air and clouds, rainfall and precipitation in the Pacific Ocean.

The Smoke From A (Not-so) Distant Fire

Learn more about the CAMP2Ex field campaign, here! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

A Tiny Satellite Studies Stormy Layers

image

The gif above shows data taken by an experimental weather satellite of Hurricane Dorian on September 3, 2019. TEMPEST-D, a NASA CubeSat, reveals rain bands in four layers of the storm by taking the data in four different radio frequencies. The multiple vertical layers show where the most warm, wet air within the hurricane is rising high into the atmosphere. Pink, red and yellow show the areas of heaviest rainfall, while the least intense areas of rainfall are in green and blue.

How does an Earth satellite the size of a cereal box help NASA monitor storms? 

image

The goal of the TEMPEST-D (Temporal Experiment for Storms and Tropical Systems Demonstration) mission is to demonstrate the performance of a CubeSat designed to study precipitation events on a global scale.

If TEMPEST-D can successfully track storms like Dorian, the technology demonstration could lead to a train of small satellites that work together to track storms around the world. By measuring the evolution of clouds from the moment of the start of precipitation, a TEMPEST constellation mission, collecting multiple data points over short periods of time, would improve our understanding of cloud processes and help to clear up one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change.

What is a CubeSat, anyway? And what’s the U for?

CubeSats are small, modular, customizable vessels for satellites. They come in single units a little larger than a rubix cube - 10cmx10cmx10cm - that can be stacked in multiple different configurations. One CubeSat is 1U. A CubeSat like TEMPEST-D, which is a 6U, has, you guessed it, six CubeSat units in it.

image

Pictured above is a full-size mockup of MarCO, a 6U CubeSat that recently went to Mars with the Insight mission. They really are about the size of a cereal box!

We are using CubeSats to test new technologies and push the boundaries of Earth Science in ways never before imagined. CubeSats are much less expensive to produce than traditional satellites; in multiples they could improve our global storm coverage and forecasting data.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

That’s a wrap! Thanks for all the great questions.

Follow Serena on Twitter at @AstroSerena and follow the International Space Station on Twitter, Instagram and Facebook to keep up with all the cool stuff happening on our orbital laboratory.


Tags
5 years ago

Hello Serena! I was wondering if given the chance would you be apart of a mission to mars in the near future, and if you could bring a personal item with you what would it be?


Tags
5 years ago

How did your perspective on Earth & humanity change from space?


Tags
5 years ago

Is the earth really as beautiful as they say from space?


Tags
5 years ago

After spending time in Antarctica, Underwater AND in Space, which would you say is your favorite?


Tags
5 years ago

Hi!! I’m a high school sophomore and I love the work NASA does! I’ve always wondered, what’s an astronaut’s first thought when leaving earth? What kind of experiences do you leave the expedition with? Thanks! :) - Lauren


Tags
5 years ago

You seem to have spent a lot of time in some pretty isolated locations during your career, what are some challenges to that? Was there anything you enjoyed about it?


Tags
5 years ago

Hi Serena, what made you think, yes, I want to be an astronaut? And what's your favourite aquatic animal?


Tags
5 years ago

What is the real raw advice for someone wanting to pursue a career at NASA?


Tags
5 years ago

And we’re live!!!

NASA Astronaut Serena AuñoƄ Chancellor is here answering your questions during this Tumblr Answer Time. Tune in and join the fun!


Tags
5 years ago

Earth’s Hot and It’s ColdÂ đŸŽ¶(and We Can Tell from Space)

From people and pets to pens and pencils, everything gives off energy in the form of heat. We’ve got special instruments that measure thermal wavelengths, so we can tell whether something is hot, cold or in between. Hotter things emit more thermal energy; colder ones emit less.

image

We have special instruments in space, zipping around Earth and measuring the hottest and coldest places on our planet.

image

We can also measure much subtler changes in heat – like when plants cool down as they take up water from the soil and ‘sweat’ it out into the air, in a process called evapotranspiration.

image

This lets us identify healthy, growing crops around the world.

image

The instrument that can do all this is called the Thermal Infrared Sensor 2 (TIRS-2). It just passed a series of rigorous tests at our Goddard Space Flight Center in Greenbelt, Md., proving it’s ready to survive in space.

image

TIRS-2 is bound for the Landsat 9 satellite, which will continue decades of work studying our planet from space.

image

 Learn more about TIRS-2 and how we see heat from space: https://www.nasa.gov/feature/goddard/2019/new-landsat-infrared-instrument-ships-from-nasa/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Our Eyes in the Sky See Toxic Waters

Warm summer temperatures often lead to dangerous blooms of phytoplankton in lakes, reservoirs and along our coastlines. These toxin-containing aquatic organisms can sicken people and pets, contaminate drinking water, and force closures at boating and swimming sites.

image

In this image, a severe bloom of toxic blue-green algae is spreading across the western half of Lake Erie. Taken on July 30, 2019 by the Operational Land Imager on our Landsat 8 satellite, this image shows green patches where the bloom was most dense and where toxicity levels were unsafe for recreational activities. Around the time of this image, the bloom covered about 300 square miles of Lake Erie’s surface, roughly the size of New York City. By August 13, the bloom had doubled to more than 620 square miles. That’s eight times the size of Cleveland. 

image

The dominant organism—a Microcystis cyanobacteria—produces the toxin microcystin, can cause liver damage, numbness, dizziness, and vomiting. On July 29, 2019, the National Oceanic Atmospheric Administration (NOAA) reported unsafe toxin concentrations in Lake Erie and have since advised people (and their pets) to stay away from areas where scum is forming on the water surface.

You can stay informed about harmful algal blooms using a new mobile app that will send you alerts on potentially harmful algal blooms in your area. Called CyAN, it's based on NASA satellite data of the color changes in lakes and other bodies of water. It serves as our eye-in-the-sky early warning system, alerting the public and local officials to when dangerous waters may be in bloom.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Earth is special. 🌎 

It's the only place in the universe that we know contains life. Celebrate its beauty by taking a look at these breathtaking images of our home planet. 

Swirling white clouds, deep blue oceans, and multicolored landscapes come to life on the pages of our new photo essay "Earth," a collection of dramatic images captured by satellites.  Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Strap in for a Tour of the Milky Way

image

The night sky isn’t flat. If you traveled deep into this part of the sky at the speed of the radio waves leaving this tower, here are some places you could reach.

Jupiter: Travel time – 35 minutes, 49 seconds.

image

The closest object in this view is the planet Jupiter, brilliant now in the evening sky
and gorgeous when seen up close by our Juno spacecraft. Distance on the night this picture was taken: 400 million miles (644 million kilometers). 

Saturn: Travel time – one hour and 15 minutes.

image

The next closest is Saturn, another bright “star” in this summer’s sky. On the right, one of the Cassini spacecraft’s last looks. Distance: 843 million miles (1.3 billion kilometers).

Pluto: Light-speed travel time from the radio tower – four hours, 33 minutes.

image

It’s not visible to the unaided eye, but Pluto is currently found roughly in this direction. Our New Horizons space mission was the first to show us what it looks like. Distance: more than 3 billion miles.

F-type star, HD 169830: Light-speed travel time from the radio tower – 123 years.

image

Within this patch of sky, there’s an F-type star called HD 169830. At this speed, it would take you 123 years to get there. We now know it has at least two planets (one of which is imagined here) — just two of more than 4,000 we've found
so far.

The Lagoon Nebula: Light-speed travel time from the radio tower – 4,000 years.

image

If you look closely, you’ll see a fuzzy patch of light and color here. If you look *really* closely, as our Hubble Space Telescope did, you’ll see the Lagoon Nebula, churning with stellar winds from newborn stars.

Black hole, Sagittarius A*: Light-speed travel time from the radio tower – 26,000 years.

image

In 26,000 years, after passing millions of stars, you could reach the center of our galaxy. Hidden there behind clouds of dust is a massive black hole. It’s hidden, that is, unless you use our Chandra X-ray Observatory which captured the x-ray flare seen here.

image

The next time you’re under a deep, dark sky, don’t forget to look up
and wonder what else might be out there.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Smoke Gets In Your Eyes
and Our Instruments

Fires are some of the most dynamic and dramatic natural phenomena. They can change rapidly, burning natural landscapes and human environments alike. Fires are a natural part of many of Earth’s ecosystems, necessary to replenish soil and for healthy plant growth. But, as the planet warms, fires are becoming more intense, burning longer and hotter.

image

Right now, a fleet of vehicles and a team of scientists are in the field, studying how smoke from those fires affects air quality, weather and climate. The mission? It’s called FIREX-AQ. They’re working from the ground up to the sky to measure smoke, find out what’s in it, and investigate how it affects our lives.

image

Starting on the ground, the Langley Aerosol Research Group Experiment (LARGE) operates out of a large van. It’s one of two such vans working with the campaign, along with some other, smaller vans. It looks a little like a food truck, but instead of a kitchen, the inside is packed full of science instruments.

image

The team drives the van out into the wilderness to take measurements of smoke and tiny particles in the air at the ground level. This is important for a few reasons: First of all, it’s the stuff we’re breathing! It also gives us a look at smoke overnight, when the plumes tend to sink down out of the atmosphere and settle near the ground until temperatures heat back up with the Sun. The LARGE group camps out with their van full of instruments, taking continuous measurements of smoke
and not getting much sleep.

image

Just a little higher up, NOAA’s Twin Otter aircraft can flit down close to where the fires are actually burning, taking measurements of the smoke and getting a closer look at the fires themselves. The Twin Otters are known as “NOAA’s workhorses” because they’re easily maneuverable and can fly nice and slow to gather measurements, topping out at about 17,000 feet.

image

Then, sometimes flying at commercial plane height (30,000 feet) and swooping all the way down to 500 feet above the ground, NASA’s DC-8 is packed wing to wing with science instruments. The team onboard the DC-8 is looking at more than 500 different chemicals in the smoke.

image

The DC-8 does some fancy flying, crisscrossing over the fires in a maneuver called “the lawnmower” and sometimes spiraling down over one vertical column of air to capture smoke and particles at all different heights. Inside, the plane is full of instrument racks and tubing, capturing external air and measuring its chemical makeup. Fun fact: The front bathroom on the DC-8 is closed during science flights to make sure the instruments don’t accidentally measure anything ejected from the plane.

image

Finally, we make it all the way up to space. We’ve got a few different mechanisms for studying fires already mounted on satellites. Some of the satellites can see where active fires are burning, which helps scientists and first responders keep an eye on large swaths of land.

image

Some satellites can see smoke plumes, and help researchers track them as they move across land, blown by wind.

image

Other satellites help us track weather and forecast how the fires might behave. That’s important for keeping people safe, and it helps the FIREX-AQ team know where to fly and drive when they’ll get the most information. These forecasts use computer models, based on satellite observations and data about how fires and smoke behave. FIREX-AQ’s data will be fed back into these models to make them even more accurate.

image

Learn more about how NASA is studying fires from the field, here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

We Like Big Rockets and We Cannot Lie: Saturn V vs. SLS

On this day 50 years ago, human beings embarked on a journey to set foot on another world for the very first time. 

image

At 9:32 a.m. EDT, millions watched as Apollo astronauts Neil Armstrong, Buzz Aldrin and Michael Collins lifted off from Launch Pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, flying high on the most powerful rocket ever built: the mighty Saturn V.

image

As we prepare to return humans to the lunar surface with our Artemis program, we’re planning to make history again with a similarly unprecedented rocket, the Space Launch System (SLS). The SLS will be our first exploration-class vehicle since the Saturn V took American astronauts to the Moon a decade ago. With its superior lift capability, the SLS will expand our reach into the solar system, allowing astronauts aboard our Orion spacecraft to explore multiple, deep-space destinations including near-Earth asteroids, the Moon and ultimately Mars.

image

So, how does the Saturn V measure up half a century later? Let’s take a look.

Mission Profiles: From Apollo to Artemis 

Saturn V

image

Every human who has ever stepped foot on the Moon made it there on a Saturn V rocket. The Saturn rockets were the driving force behind our Apollo program that was designed to land humans on the Moon and return them safely back to Earth.

image

Developed at our Marshall Space Flight Center in the 1960s, the Saturn V rocket (V for the Roman numeral “5”)  launched for the first time uncrewed during the Apollo 4 mission on November 9, 1967. One year later, it lifted off for its first crewed mission during Apollo 8. On this mission, astronauts orbited the Moon but did not land. Then, on July 16, 1969, the Apollo 11 mission was the first Saturn V flight to land astronauts on the Moon. In total, this powerful rocket completed 13 successful missions, landing humans on the lunar surface six times before lifting off for the last time in 1973.

Space Launch System (SLS) 

image

Just as the Saturn V was the rocket of the Apollo generation, the Space Launch System will be the driving force behind a new era of spaceflight: the Artemis generation.

image

During our Artemis missions, SLS will take humanity farther than ever before. It is the vehicle that will return our astronauts to the Moon by 2024, transporting the first woman and the next man to a destination never before explored – the lunar South Pole. Over time, the rocket will evolve into increasingly more powerful configurations to provide the foundation for human exploration beyond Earth’s orbit to deep space destinations, including Mars.

SLS will take flight for the first time during Artemis 1 where it will travel 280,000 miles from Earth – farther into deep space than any spacecraft built for humans has ever ventured.

Size: From Big to BIGGER 

Saturn V

image

The Saturn V was big. 

In fact, the Vehicle Assembly Building at Kennedy Space Center is one of the largest buildings in the world by volume and was built specifically for assembling the massive rocket. At a height of 363 feet, the Saturn V rocket was about the size of a 36-story building and 60 feet taller than the Statue of Liberty!

Space Launch System (SLS)

image

Measured at just 41 feet shy of the Saturn V, the initial SLS rocket will stand at a height of 322 feet. Because this rocket will evolve into heavier lift capacities to facilitate crew and cargo missions beyond Earth’s orbit, its size will evolve as well. When the SLS reaches its maximum lift capability, it will stand at a height of 384 feet, making it the tallest rocket in the world.

Power: Turning Up the Heat 

Saturn V

For the 1960s, the Saturn V rocket was a beast – to say the least.

Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds and generated 7.6 million pounds of thrust at launch. That is more power than 85 Hoover Dams! This thrust came from five F-1 engines that made up the rocket’s first stage. With this lift capability, the Saturn V had the ability to send 130 tons (about 10 school buses) into low-Earth orbit and about 50 tons (about 4 school buses) to the Moon.

Space Launch System (SLS)

image

Photo of SLS rocket booster test

Unlike the Saturn V, our SLS rocket will evolve over time into increasingly more powerful versions of itself to accommodate missions to the Moon and then beyond to Mars.

image

The first SLS vehicle, called Block 1, will weigh 5.75 million pounds and produce 8.8 million pounds of thrust at time of launch. That’s 15 percent more than the Saturn V produced during liftoff! It will also send more than 26 tons  beyond the Moon. Powered by a pair of five-segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within 90 seconds!

image

Following Block 1, the SLS will evolve five more times to reach its final stage, Block 2 Cargo. At this stage, the rocket will provide 11.9 million pounds of thrust and will be the workhorse vehicle for sending cargo to the Moon, Mars and other deep space destinations. SLS Block 2 will be designed to lift more than 45 tons to deep space. With its unprecedented power and capabilities, SLS is the only rocket that can send our Orion spacecraft, astronauts and large cargo to the Moon on a single mission.

Build: How the Rockets Stack Up

Saturn V

image

The Saturn V was designed as a multi-stage system rocket, with three core stages. When one system ran out of fuel, it separated from the spacecraft and the next stage took over. The first stage, which was the most powerful, lifted the rocket off of Earth’s surface to an altitude of 68 kilometers (42 miles). This took only 2 minutes and 47 seconds! The first stage separated, allowing the second stage to fire and carry the rest of the stack almost into orbit. The third stage placed the Apollo spacecraft and service module into Earth orbit and pushed it toward the Moon. After the first two stages separated, they fell into the ocean for recovery. The third stage either stayed in space or crashed into the Moon.

Space Launch System (SLS)

Much like the Saturn V, our Space Launch System is also a multi-stage rocket. Its three stages (the solid rocket boosters, core stage and upper stage) will each take turns thrusting the spacecraft on its trajectory and separating after each individual stage has exhausted its fuel. In later, more powerful versions of the SLS, the third stage will carry both the Orion crew module and a deep space habitat module.

A New Era of Space Exploration 

Just as the Saturn V and Apollo era signified a new age of exploration and technological advancements, the Space Launch System and Artemis missions will bring the United States into a new age of space travel and scientific discovery.

Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

When the Moon's Shadow Falls on Earth

On July 2, 2019, a total solar eclipse will pass over parts of Argentina and Chile.

image

Solar eclipses happen when the Moon passes directly between the Sun and Earth, casting its shadow onto Earth's surface. Because the Moon’s orbit isn't perfectly in line with the Sun and Earth, its shadow usually passes above or below Earth. But when it lines up just right, we get a solar eclipse!

image

People in the inner part of the Moon's shadow — the umbra — have the chance to witness a total solar eclipse, while those in the outer part of the shadow — the penumbra — experience a partial solar eclipse.

image

The path of the total solar eclipse stretches across parts of Chile and Argentina. People outside this path may see a partial eclipse or no eclipse at all.

During a total solar eclipse, the Moon blocks out the Sun's bright face, revealing its comparatively faint outer atmosphere, the corona. The corona is a dynamic region that is thought to hold the answers to questions about the fundamental physics of the Sun — like why the corona is so much hotter than the Sun's surface and how the Sun's constant outflow of material, the solar wind, is accelerated to such high speeds. 

image

Image Credit: Miloslav DruckmĂŒller, Peter Aniol, Shadia Habbal

Our Parker Solar Probe and the upcoming Solar Orbiter mission from the European Space Agency are exploring these questions by flying through the corona itself and taking unprecedented measurements of the conditions there. Plus, our newly-chosen PUNCH mission will create tiny, artificial eclipses in front of its cameras — using an instrument called a coronagraph — to study structures in the Sun's corona and examine how it generates the solar wind.

Watching the eclipse

It’s never safe to look directly at the uneclipsed or partially eclipsed Sun – so you’ll need special solar viewing glasses or an indirect viewing method, like pinhole projection, to watch the eclipse. 

image

For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no sunlight shining is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

No matter where you are, you can watch the eclipse online! The Exploratorium will be streaming live views of the eclipse with commentary in both English and Spanish starting at 4 p.m. EDT / 1 p.m. PDT on July 2. Watch with us at nasa.gov/live!

Para mås información e actualizaciones en español acerca del eclipse, sigue a @NASA_es en Twitter o vea esta hoja de hechos.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags