Laravel

Human - Blog Posts

4 years ago

Get to Know the 5 College Teams Sending Their Experiments to Space!

Did you know that YOU (yes you!), can send science experiments to the International Space Station? 

To celebrate 20 years of continuous human presence on the International Space Station, NASA STEM on Station is sending five student experiments to the space station through Student Payload Opportunity with Citizen Science (SPOCS). Selected teams will also engage K-12 students as a part of their experiment through citizen-science.

Get to know the 5 college teams sending their experiments to space!

Arkansas State University 

Team: A-State Science Support System

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Microgravity Environment Impact on Plastic Biodegradation by Galleria mellonella

Experiment Description: Discover the ability of wax worms to degrade plastics in space.

Why did you propose this experiment?

Our team’s passion for sustainability developed into novel ideas for space travel through biodegradation of plastics. 

How will the experiment benefit humankind or future space exploration?

If our experiment is successful, it will “launch” us closer to understanding how to reduce humankind’s plastic footprint on Earth and allow us to safely push farther into unknown planetary habitats.

How have you worked together as a team during the pandemic?

Unknown to each other before the project, our interdisciplinary team formed through virtual communication.

What science fiction character best represents your team and why?

The sandworms of Dune represent our team perfectly considering their importance in space travel, the natural ecological service they provide, and their sheer awesomeness

Columbia University

Team: Columbia Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Characterizing Antibiotic Resistance in Microgravity Environments (CARMEn)

Experiment Description: Discover the impact of mutations on bacteria in microgravity when grown into a biofilm with fungus.

Why did you propose this experiment?

As a highly interdisciplinary team united by our love of outer space, SPOCS was the perfect opportunity to fuse biology, engineering, and education into a meaningful team project.

How will the experiment benefit humankind or future space exploration?

Studying how different microorganisms interact with each other to develop bacterial resistance in space will help improve antibiotic treatments for future Artemis astronauts.

How have you worked together as a team during the pandemic?

Most of our team actually hasn’t ever met in person—we’ve been videoconferencing weekly since May!

What science fiction character best represents your team and why?

Our team is definitely Buzz Lightyear from Toy Story, because we strive to reach infinity (or at least the International Space Station) and beyond!

Stanford University

Team: Stanford Student Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Biopolymer Research for In-Situ Capabilities (BRIC)

Experiment Description: Determine how microgravity impacts the solidification of biobricks.

Why did you propose this experiment?

We have an ongoing project to design and build a machine that turns lunar or Martian soil into bricks, and we want to learn how reduced gravity will impact the process.

How will the experiment benefit humankind or future space exploration?

We are studying an environmentally-friendly concrete alternative that can be used to make structures on Earth and other planets out of on-site, readily available resources.

How have you worked together as a team during the pandemic?

We transitioned our weekly meetings to an online format so that we could continue at our planned pace while maintaining our community.

What science fiction character best represents your team and why?

Like our beloved childhood friend WALL-E, we craftily make inhospitable environments suitable for life with local resources.

University of Idaho

Team: Vandal Voyagers I

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Bacteria Resistant Polymers in Microgravity

Experiment Description: Determine how microgravity impacts the efficacy of bacteria resistant polymers.

Why did you propose this experiment?

The recent emphasis on surface sterility got us thinking about ways to reduce the risk of disease transmission by surfaces on the International Space Station.

How will the experiment benefit humankind or future space exploration?

If successful, the application of proposed polymers can benefit humankind by reducing transmission through high contact surfaces on and off Earth such as hand rails and door handles.

How have you worked together as a team during the pandemic?

We are allowed to work collaboratively in person given we follow the current university COVID guidelines.

What science fiction character best represents your team and why?

Mark Watney from The Martian because he is willing to troubleshoot and problem solve on his own while collaborating with NASA from afar.

University of New Hampshire at Manchester

Team: Team Cooke

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Novel Methods of Antibiotic Discovery in Space (NoMADS)

Experiment Description: Determine how microgravity impacts the amount of bacterium isolates that produce antibiotic metabolites.

Why did you propose this experiment?

To contribute to the limited body of knowledge regarding bacterial resistance and mutations in off-Earth conditions.

How will the experiment benefit humankind or future space exploration?

Understanding how bacteria in the human microbiome and on spacecraft surfaces change can ensure the safe and accurate treatment of bacterial infections in astronauts.

How have you worked together as a team during the pandemic?

Our team continued to evolve our communication methods throughout the pandemic, utilizing frequent remote video conferencing, telecommunications, email, and in-person conferences.

What science fiction character best represents your team and why?

Professor Xavier, the founder of the X-Men, because he also works with mutants and feels that while they are often misunderstood, under the right circumstances they can greatly benefit the world.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Distance: Hazard Far From Home

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

image

The third and perhaps most apparent hazard is, quite simply, the distance.

image
image

Rather than a three-day lunar trip, astronauts would be leaving our planet for roughly three years. Facing a communication delay of up to 20 minutes one way and the possibility of equipment failures or a medical emergency, astronauts must be capable of confronting an array of situations without support from their fellow team on Earth.

image

Once you burn your engines for Mars, there is no turning back so planning and self-sufficiency are essential keys to a successful Martian mission. The Human Research Program is studying and improving food formulation, processing, packaging and preservation systems.

image
image

While International Space Station expeditions serve as a rough foundation for the expected impact on planning logistics for such a trip, the data isn’t always comparable, but it is a key to the solution.

image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including distance from Earth. To learn more, and find out what our Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of distance with Erik Antonsen, the Assistant Director for Human Systems Risk Management at the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
6 years ago

Isolation, Hazard of the Mind

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized hazards astronauts will encounter on a continual basis into five classifications. (View the first hazard). Let’s dive into the second hazard:

image

Overcoming the second hazard, isolation and confinement, is essential for a successful mission to Mars. Behavioral issues among groups of people crammed in a small space over a long period of time, no matter how well trained they are, are inevitable. It is a topic of study and discussion currently taking place around the selection and composition of crews.

image

On Earth, we have the luxury of picking up our cell phones and instantly being connected with nearly everything and everyone around us. 

image

On a trip to Mars, astronauts will be more isolated and confined than we can imagine. 

image

Sleep loss, circadian desynchronization (getting out of sync), and work overload compound this issue and may lead to performance decrements or decline, adverse health outcomes, and compromised mission objectives.

image

To address this hazard, methods for monitoring behavioral health and adapting/refining various tools and technologies for use in the spaceflight environment are being developed to detect and treat early risk factors. Research is also being conducted in workload and performance, light therapy for circadian alignment or internal clock alignment, and team cohesion.

image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including isolation and confinement. To learn more, and find out what the Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of isolation and confinement with Tom Williams, a NASA Human Factors and Behavior Performance Element Scientist at the Johnson Space Center. 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Space Radiation: Hazard of Stealth

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized hazards astronauts will encounter on a continual basis into five classifications.

image

The first hazard of a human mission to Mars is also the most difficult to visualize because, well, space radiation is invisible to the human eye. Radiation is not only stealthy, but considered one of the most menacing of the five hazards.

image
image
image

Above Earth’s natural protection, radiation exposure increases cancer risk, damages the central nervous system, can alter cognitive function, reduce motor function and prompt behavioral changes. To learn what can happen above low-Earth orbit, we study how radiation affects biological samples using a ground-based research laboratory.

image
image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including radiation. To learn more, and find out what our Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website or check out this week’s episode of “Houston We Have a Podcast,” in which our host Gary Jordan further dives into the threat of radiation with Zarana Patel, a radiation lead scientist at the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Space Station Science: Biological Research

image

Each month, we highlight a different research topic on the International Space Station. In August, our focus is biological research. Learning how spaceflight affects living organisms will help us understand potential health risks related to humans on long duration missions, including our journey to Mars.

image

Cells, microbes, animals and plants are affected by microgravity, and studying the processes involved in adaptation to spaceflight increases our fundamental understanding of biological processes on Earth. Results on Earth from biological research in space include the development of new medications, improved agriculture, advancements in tissue engineering and regeneration, and more. 

Take a look at a few of the biological research experiments performed on space station:

Biomolecule Sequencer

image

Living organisms contain DNA, and sequencing DNA is a powerful way to understand how they respond to changing environments. The Biomolecule Sequencer experiment hopes to demonstrate (for the first time) that DNA sequencing is feasible in an orbiting spacecraft. Why? A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA- based life elsewhere in the solar system.

Ant-stronauts

image

Yes, ant-stronauts…as in ants in space. These types of studies provide insights into how ants answer collective search problems. Watching how the colony adapts as a unit in the quest for resources in extreme environments, like space, provides data that can be used to build algorithms with varied applications. Understanding how ants search in different conditions could have applications for robotics.

TAGES

image

The TAGES experiment (Transgenic Arabidopsis Gene Expression System) looks to see how microgravity impacts the growth of plant roots. Fluorescent markers placed on the plant’s genes allow scientists to study root development of Arabidopsis (a cress plant) grown on the space station. Evidence shows that directional light in microgravity skews root growth to the right, rather than straight down from the light source. Root growth patters on station mimic that of plants grown at at 45% degree angle on Earth. Space flight appears to slow the rate of the plant’s early growth as well.

Heart Cells

image

Spaceflight can cause a suite of negative health effects, which become more problematic as crew members stay in orbit for long periods of time. Effects of Microgravity on Stem Cell-Derived Cardiomycytes (Heart Cells) studies the human heart, specifically how heart muscle tissue contracts, grows and changes in microgravity. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions.

Medaka Fish

image

Chew on these results…Jaw bones of Japanese Medaka fish in microgravity show decreased mineral density and increased volume of osteoclasts, cells that break down bone tissue. Results from this study improve our understanding of the mechanisms behind bone density and organ tissue changes in space.

These experiments, and many others, emphasize the importance of biological research on the space station. Understanding the potential health effects for crew members in microgravity will help us develop preventatives and countermeasures.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags