Laravel

Research - Blog Posts

7 years ago

Celebrating the Earth (Off the Earth!)

To find the perfect perch for Earth observation research, just look up – about 240 miles up. The International Space Station serves as an optimal platform for studying our dynamic planet, where spectacular views support science.

Celebrating The Earth (Off The Earth!)

With currently active instruments and facilities like High Definition Earth Viewing, Crew Earth Observations, Lightning Imaging Sensor, SAGE-III and Meteor, researchers on the ground are able to use the station’s unique (and useful!) vantage point to track Earth’s weather patterns, obtain images documenting changes on the planet’s surface, understand the origin of meteors falling towards Earth, and better understand the atmosphere.

The space station’s 90-minute orbit allows it to cover 90% of the Earth’s populated surfaces. That means we are able to study A LOT of that big blue marble.

Let’s talk a little about how the space station serves as a platform for Earth observation:

image

Each day, as the space station passes over regions of the Earth, crew members photograph the area below as a part of the Crew Earth Observations Facility investigation, one of the longest-running experiments on the orbiting laboratory. Crew members are able to photograph large-scale weather events like the recent Hurricane Harvey from the space station’s Cupola. These little science postcards from space can be used by researchers and the public to learn more about our home planet.

Want to see a picture of your hometown from space? Search for it in the Gateway to Astronaut Photography of Earth (GAPE).

image

The High Definition Earth Viewing (HDEV) experiment streams live video of Earth for online viewing. This investigation not only provides hours and hours of footage of the Earth below, but also demonstrates how the technology holds up against the harsh environment of space. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams perform most of the HDEV operation. (Whoa! Check out HUNCH and STEM on Station for more opportunities for student involvement!)

Useful for weather forecasting, hurricane monitoring, and observations of large-scale climate phenomena such as El Niño, RapidScat used radar pulses reflected off the ocean to measure wind speed and direction over the ocean.

image

RapidScat completed its successful two-year mission, outlasting its original decommission date before suffering a power loss. Although RapidScat is no longer transmitting data back to Earth, the station hosts many other Earth-observation tools the Cyclone Intensity Measurements from the ISS (CyMISS) an experiment that seeks to develop detailed information on tropical storm structure to better estimate storm intensity, which will help government agencies to better prepare communities for impending natural disasters; and the Cloud-Aerosol Transport System (CATS), a previously-flown lidar instrument which measured atmospheric profiles of aerosols and clouds to better understand their properties and interactions, as well as provided data useful to improving climate change models.

image

Learn more about RapidScat’s mission conclusion HERE! Take a look at CATS mission data HERE!

Watch more inspiring videos and learn about how we’re capturing the beauty of Earth HERE.

image

Crew members are able to photograph large-scale weather events like the recent Hurricane Harvey from the space station’s Cupola. These little science postcards from space can be used by researchers and the public to learn more about our home planet.

Plants in space!

Future long-duration missions into the solar system will require a fresh food supply to supplement crew diets, which means growing crops in space. Growing food in such a harsh environment also teaches us a little bit about growing in harsh environments here on Earth.

Here are a few plant-based investigations currently happening aboard the orbiting laboratory:

image

Veggie is a chamber on the space station that helps scientists grow, harvest and study different space crops. This experiment is called VEG-03D and they’ve been able to grow six rounds of crops so far.

SpaceX's 13th Commercial Resupply vehicle carried many valuable items to the orbiting laboratory, including Plant Gravity Perception, an investigation that uses the European Modular Cultivation System (EMCS) to simulate gravity to help plants grow its roots downward, and shoots upwards. The shoots need to face upwards, towards the light, so they can absorb sunlight and nutrients. Without this, plants wouldn’t know which way to grow. Yikes!

Learn more about Plant Gravity Perception HERE!

image

The Advanced Plant Habitat is a large chamber that supports commercial and fundamental plant research for at least one year of continuous use. A great feature to this habitat is that the astronauts can view the plant’s progress through a window on the door.

Whether astronauts are taking pictures of the planet or growing crops in space, all science aboard the space station plants seeds for a better life on Earth. Biology investigations directly grow our knowledge of agricultural techniques for harsh environments and imagery from space can give us a clearer idea of our planet’s health and emerging weather patterns.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
7 years ago

All About That (Nucleic) Base

Studying DNA Aboard the International Space Station

What do astronauts, microbes and plants all have in common? Each relies on DNA – essentially a computer code for living things – to grow and thrive. The microscopic size of DNA, however, can create some big challenges for studying it aboard the International Space Station.

image

The real question about DNA in space: but why, tho?

Studying DNA in space could lead to a better understanding of microgravity’s impact on living organisms and could also offer ways to identify unknown microbes in spacecraft, humans and the deep space locations we hope to visit one day.

image

Most Earth-based molecular research equipment is large and requires significant amounts of power to run. Those are two characteristics that can be difficult to support aboard the station, so previous research samples requiring DNA amplification and sequencing had to be stored in space until they could be sent back to Earth aboard a cargo spacecraft, adding to the time required to get results.

Fun science pro tip: amplification means to make lots and lots of copies of a specific section of DNA.

image

However, all of that has changed in a few short years as we’ve worked to find new solutions for rapid in-flight molecular testing aboard the space station.

“We need[ed] to get machines to be compact, portable, robust, and independent of much power generation to allow for more agile testing in space,” NASA astronaut and molecular biologist Kate Rubins said in a 2016 downlink with the National Institutes of Health.

The result? An advanced suite of tabletop and palm-sized tools including MinION, miniPCR, and Wet-Lab-2, and more tools and processes on the horizon.

The timeline:

Space-based DNA testing took off in 2016 with the Biomolecule Sequencer.

image

Comprised of the MinION sequencer and a Surface Pro 3 tablet for analysis, the tool was used to sequence DNA in space for the first time with Rubins at the helm.

In 2017, that tool was used again for Genes in Space-3, as NASA astronaut Peggy Whitson collected and tested samples of microbial growth from around the station.

image

Alongside MinION, astronauts also tested miniPCR, a thermal cycler used to perform the polymerase chain reaction. Together these platforms provided the identification of unknown station microbes for the first time EVER from space.

This year, those testing capabilities translated into an even stronger portfolio of DNA-focused research for the orbiting laboratory’s fast-paced science schedule. For example, miniPCR is being used to test weakened immune systems and DNA alterations as part of a student-designed investigation known as Genes in Space-5.

image

The study hopes to reveal more about astronaut health and potential stress-related changes to DNA created by spaceflight. Additionally, WetLab-2 facility is a suite of tools aboard the station designed to process biological samples for real-time gene expression analysis.

image

More tools for filling out the complete molecular studies opportunities on the orbiting laboratory are heading to space soon.

“The mini revolution has begun,” said Sarah Wallace, our principal investigator for the upcoming Biomolecule Extraction and Sequencing Technology (BEST) investigation. “These are very small, efficient tools. We have a nicely equipped molecular lab on station and devices ideally sized for spaceflight.”

image

BEST is scheduled to launch to the station later this spring and will compare swab-to-sequencer testing of unknown microbes aboard the space station against current culture-based methods.

Fast, reliable sequencing and identification processes could keep explorers safer on missions into deep space. On Earth, these technologies may make genetic research more accessible, affordable and mobile.

To learn more about the science happening aboard the space station, follow @ISS_Research for daily updates. For opportunities to see the space station pass over your town, check out Spot the Station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

How does a microgravity garden grow when there's no up or down? An advanced chamber, about the size of a mini-fridge, is giving us a clearer perspective of plant growth habits. Without gravity and the addition of a wide variety of light and humidity settings, the plants cultivated on the International Space Station provide a world of opportunity to study space-based agricultural cycles.

Learn more about our space garden HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

See Why Our Researchers Explore Earth's Extreme and Remote Environments

image

When we talk about exploration in far-flung places, you might think of space telescopes taking images of planets outside our solar system, or astronauts floating on the International Space Station. 

image

But did you know our researchers travel to some of Earth's most inaccessible and dangerous places, too? 

image

Two scientists working with the ICESat-2 mission just finished a trek from the South Pole to latitude 88 south, a journey of about 450 miles. They had to travel during the Antarctic summer - the region's warmest time, with near-constant sunshine - but the trek was still over solid ice and snow. 

image

The trip lasted 14 days, and was an important part of a process known as calibration and validation. ICESat-2 will launch this fall, and the team was taking extremely precise elevation measurements that will be used to validate those taken by the satellite. 

image

Sometimes our research in Earth's remote regions helps us understand even farther-flung locations…like other planets. 

image

Geologic features on Mars look very similar to islands and landforms created by volcanoes here on our home planet. 

image

As hot jets of magma make their way to Earth's surface, they create new rocks and land - a process that may have taken place on Mars and the Moon.

image

In 2015, our researchers walked on newly cooled lava on the Holuhraun volcano in Iceland to take measurements of the landscape, in order to understand similar processes on other rocky bodies in our solar system.

image

There may not be flowing lava in the mangrove forests in Gabon, but our researchers have to brave mosquitoes and tree roots that reach up to 15-foot high as they study carbon storage in the vegetation there.

image

The scientists take some measurements from airplanes, but they also have to gather data from the ground in one our of planet's most pristine rainforests, climbing over and around roots that can grow taller than people. They use these measurements to create a 3-D map of the ecosystem, which helps them understand how much carbon in stored in the plants. 

image

You can follow our treks to Earth’s most extreme locales on our Earth Expeditions blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Science-Heavy SpaceX Dragon Headed to Space Station

Heads up: a new batch of science is headed to the International Space Station aboard the SpaceX Dragon on April 2, 2018. Launching from Florida's Cape Canaveral Air Force Station atop a Falcon 9 rocket, this fire breathing (well, kinda…) spacecraft will deliver science that studies thunderstorms on Earth, space gardening, potential pathogens in space, new ways to patch up wounds and more.

image

Let's break down some of that super cool science heading 250 miles above Earth to the orbiting laboratory:

Sprites and Elves in Space

Atmosphere-Space Interactions Monitor (ASIM) experiment will survey severe thunderstorms in Earth's atmosphere and upper-atmospheric lightning, or transient luminous events. 

image

These include sprites, flashes caused by electrical break-down in the mesosphere; the blue jet, a discharge from cloud tops upward into the stratosphere; and ELVES, concentric rings of emissions caused by an electromagnetic pulse in the ionosphere.

Here's a graphic showing the layers of the atmosphere for reference:

image

Metal Powder Fabrication

Our Sample Cartridge Assembly (MSL SCA-GEDS-German) experiment will determine underlying scientific principles for a fabrication process known as liquid phase sintering, in microgravity and Earth-gravity conditions.

image

Science term of the day: Liquid phase sintering works like building a sandcastle with just-wet-enough sand; heating a powder forms interparticle bonds and formation of a liquid phase accelerates this solidification, creating a rigid structure. But in microgravity, settling of powder grains does not occur and larger pores form, creating more porous and distorted samples than Earth-based sintering. 

Sintering has many applications on Earth, including metal cutting tools, automotive engine connecting rods, and self-lubricating bearings. It has potential as a way to perform in-space fabrication and repair, such as building structures on the moon or creating replacement parts during extraterrestrial exploration.

Plants in space! It's l[a]unch time!

Understanding how plants respond to microgravity and demonstrating reliable vegetable production in space represent important steps toward the goal of growing food for future long-duration missions. The Veggie Passive Orbital Nutrient Delivery System (Veggie PONDS) experiment will test a passive nutrient delivery system in the station's Veggie plant growth facility by cultivating lettuce and mizuna greens for harvest and consumption on orbit.

The PONDS design features low mass and low maintenance, requires no additional energy, and interfaces with the Veggie hardware, accommodating a variety of plant types and growth media.

image

Quick Science Tip: Download the Plant Growth App to grow your own veggies in space! Apple users can download the app HERE! Android users click HERE!

Testing Materials in Space

The Materials ISS Experiment Flight Facility (MISSE-FF) experiment will provide a unique platform for testing how materials, coatings and components react in the harsh environment of space.

image

A continuation of a previous experiment, this version's new design eliminates the need for astronauts to perform spacewalks for these investigations. New technology includes power and data collection options and the ability to take pictures of each sample on a monthly basis, or more often if required. The testing benefits a variety of industries, including automotive, aeronautics, energy, space, and transportation.

New Ways to Develop Drugs in Space

Science-Heavy SpaceX Dragon Headed To Space Station

Microgravity affects movement and effectiveness of drugs in unique ways. Microgravity studies already have resulted in innovative medicines to treat cancer, for example. The Metabolic Tracking investigation determines the possibility of developing improved drugs in microgravity, using a new method to test the metabolic impacts of drug compounds. This could lead to more effective, less expensive drugs.

Follow @ISS_Research on Twitter for your daily dose of nerdy, spacey goodness.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which begins Feb. 1, 2018 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

image

The HERA XVI crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

Kent Kalogera

Jennifer Yen

Erin Hayward

Gregory Sachs

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

image

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation. 

image

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

The crew follows a timeline that is similar to one used for the space station crew.

They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.

Mission: February 1, 2018 - March 19, 2018

image

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE. 

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

How do space plants grow? This experiment on the International Space Station hopes to find out. Space-grown plants look mostly normal, but have some distinct features compared to plants grown on Earth – most notably in the way their roots grow.

Roots evolved to grow “down” to search out nutrients and water, and on Earth, that response is predominantly governed by the force of gravity. But how does a plant know which way is down when there is no “down”? What determines the direction in which the plant’s roots should grow in space?

We are studying the molecular genetic signals that help guide plant growth in the novel environment of spaceflight, including how plants use new molecular “tools” to sense and respond to their environment when familiar signals are absent. What we learn could improve the way we grow plants in microgravity on future space missions, enabling crews to use plants for food and oxygen. This is just one of many petri plates filled with tiny plants from the Characterizing Arabidopsis Root Attractions-2 (CARA-2) that was recently harvest aboard the space station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

6 Ways You Are Safer Thanks to NASA Technology

By now everyone knows that we are to thank for the memory foam in your mattress and the camera in your cell phone. (Right? Right.)

But our technology is often also involved behind the scenes—in ways that make the products we use daily safer and stronger, and in some cases, that can even save lives.

Here are some examples from this year’s edition of Spinoff, our yearly roundup of “space in your life”:

Impact Testing

image

What happens to your car bumper in an accident? When does it crumple and when does it crack? And are all bumpers coming off the assembly line created equal?

These types of questions are incredibly important when designing a safe car, and one technology that helps almost every U.S. automobile manufacturer find answers is something we helped develop when we had similar questions about the Space Shuttle.

Before flying again after the Columbia disaster in 2003, we had to be sure we understood what went wrong and how to prevent it from ever happening again. We worked with Trilion, Inc. to develop a system using high-speed cameras and software to analyze every impact—from the one that actually happened on the Shuttle to any others we could imagine—and design fixes.

Finding Survivors

image

We’re pretty good at finding things you can’t see with the naked eye—from distant exoplanets to water on Mars.

But there are also plenty of uses for that know-how on Earth.

One example that has already saved lives: locating heartbeats under debris.

Engineers at our Jet Propulsion Laboratory adapted technology first devised to look for gravity fluctuations to create FINDER, which stands for Finding Individuals for Disaster and Emergency Response and can detect survivors through dense rubble.

We have licensed the technology to two companies, including R4, and it has already been used in natural disaster responses, including after earthquakes in Nepal, Mexico City, Ecuador, and after Hurricane Maria in Puerto Rico.

Fighting Forest Fires

image

As we have seen this year with devastating wildfires in California, forest fires can spread incredibly quickly.

Knowing when to order an evacuation, where to send firefighters, and how to make every other decision—all amid a raging inferno—depends on having the most up-to-date information as quickly as possible.

Using our expertise in remote sensing and communicating from space, we helped the U.S. Forest Service make its process faster and more reliable, so the data from airborne sensors gets to decision makers on the front line and at the command center in the blink of an eye.

Safer, Germ-Free Ambulances 

image

When paramedics come racing into a home, the last thing anybody is worrying about is where the ambulance was earlier that morning. A device we helped create ensures you won’t have to.

AMBUstat creates a fog that sterilizes every surface in an ambulance in minutes, so any bacteria, viruses or other contaminants won’t linger on to infect the next patient.

This technology works its magic through the power of atomic oxygen—the unpaired oxygen atoms that are common in the upper reaches of Earth’s atmosphere. We’ve had to learn about these atoms to devise ways to ensure they won’t destroy our spacecraft or harm astronauts, but here, we were able to use that knowledge to direct that destructive power at germs.

Air Filters 

image

Did you know the air we breathe inside buildings is often up to 10 times more polluted than the air outdoors?

Put the air under a microscope and it’s not pretty, but a discovery we made in the 1990s can make a big impact.

We were working on a way to clear a harmful chemical that accumulates around plants growing on a spacecraft, and it turned out to also neutralize bacteria, viruses, and mold and eliminate volatile organic compounds.

Now air purifiers using this technology are deployed in hospital operating rooms, restaurant kitchens, and even major baseball stadiums to improve air quality and keep everyone healthier. Oh, and you can buy one for your house, too.

Driverless Cars 

image

Car companies are moving full-speed ahead to build the driverless cars of the not-so-distant future. Software first created to help self-learning robots navigate on Mars may help keep passengers and pedestrians safer once those cars hit the road. The software creates an artificially intelligent “brain” for a car (or drone, for that matter) that can automatically identify and differentiate between cars, trucks, pedestrians, cyclists, and more, helping ensure the car doesn’t endanger any of them. 

So, now that you know a few of the spinoff technologies that we helped develop, you can look for them throughout your day. Visit our page to learn about more spinoff technologies: https://spinoff.nasa.gov Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
7 years ago

2017 Was One of Our Planet’s Hottest Years on Record

image

We just finished the second hottest year on Earth since global temperature estimates first became feasible in 1880. Although 2016 still holds the record for the warmest year, 2017 came in a close second, with average temperatures 1.6 degrees Fahrenheit higher than the mean.

image

2017’s temperature record is especially noteworthy, because we didn’t have an El Niño this year. Often, the two go hand-in-hand.

El Niño is a climate phenomenon that causes warming of the tropical Pacific Ocean waters, which affect wind and weather patterns around the world, usually resulting in warmer temperatures globally. 2017 was the warmest year on record without an El Niño.

image

We collect the temperature data from 6,300 weather stations and ship- and buoy-based observations around the world, and then analyze it on a monthly and yearly basis. Researchers at the National Oceanic and Atmospheric Administration (NOAA) do a similar analysis; we’ve been working together on temperature analyses for more than 30 years. Their analysis of this year’s temperature data tracks closely with ours.

image

The 2017 temperature record is an average from around the globe, so different places on Earth experienced different amounts of warming. NOAA found that the United States, for instance, had its third hottest year on record, and many places still experienced cold winter weather.

image

Other parts of the world experienced abnormally high temperatures throughout the year. Earth’s Arctic regions are warming at roughly twice the rate of the rest of the planet, which brings consequences like melting polar ice and rising sea levels.

image

Increasing global temperatures are the result of human activity, specifically the release of greenhouse gases like carbon dioxide and methane. The gases trap heat inside the atmosphere, raising temperatures around the globe.  

image

We combine data from our fleet of spacecraft with measurements taken on the ground and in the air to continue to understand how our climate is changing. We share this important data with partners and institutions across the U.S. and around the world to prepare and protect our home planet.

Earth’s long-term warming trend can be seen in this visualization of NASA’s global temperature record, which shows how the planet’s temperatures are changing over time, compared to a baseline average from 1951 to 1980.

Learn more about the 2017 Global Temperature Report HERE. 

Discover the ways that we are constantly monitoring our home planet HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Are we alone in the universe?

There’s never been a better time to ponder this age-old question. We now know of thousands of exoplanets – planets that orbit stars elsewhere in the universe.

image

So just how many of these planets could support life?

Scientists from a variety of fields — including astrophysics, Earth science, heliophysics and planetary science — are working on this question. Here are a few of the strategies they’re using to learn more about the habitability of exoplanets.

Squinting at Earth

Even our best telescopic images of exoplanets are still only a few pixels in size. Just how much information can we extract from such limited data? That’s what Earth scientists have been trying to figure out.

One group of scientists has been taking high-resolution images of Earth from our Earth Polychromatic Imaging Camera and ‘degrading’ them in order to match the resolution of our pixelated exoplanet images. From there, they set about a grand process of reverse-engineering: They try to extract as much accurate information as they can from what seems — at first glance — to be a fairly uninformative image.

image

Credits: NOAA/NASA/DSCOVR

So far, by looking at how Earth’s brightness changes when land versus water is in view, scientists have been able to reverse-engineer Earth's albedo (the proportion of solar radiation it reflects), its obliquity (the tilt of its axis relative to its orbital plane), its rate of rotation, and even differences between the seasons. All of these factors could potentially influence a planet’s ability to support life.

Avoiding the “Venus Zone”

In life as in science, even bad examples can be instructive. When it comes to habitability, Venus is a bad example indeed: With an average surface temperature of 850 degrees Fahrenheit, an atmosphere filled with sulfuric acid, and surface pressure 90 times stronger than Earth’s, Venus is far from friendly to life as we know it.

image

The surface of Venus, imaged by Soviet spacecraft Venera 13 in March 1982

Since Earth and Venus are so close in size and yet so different in habitability, scientists are studying the signatures that distinguish Earth from Venus as a tool for differentiating habitable planets from their unfriendly look-alikes.

Using data from our Kepler Space Telescope, scientists are working to define the “Venus Zone,” an area where planetary insolation – the amount of light a given planet receives from its host star -- plays a key role in atmospheric erosion and greenhouse gas cycles.

image

Planets that appear similar to Earth, but are in the Venus Zone of their star, are, we think, unlikely to be able to support life.

Modeling Star-Planet Interactions

When you don’t know one variable in an equation, it can help to plug in a reasonable guess and see how things work out. Scientists used this process to study Proxima b, our closest exoplanet neighbor. We don’t yet know whether Proxima b, which orbits the red dwarf star Proxima Centauri four light-years away, has an atmosphere or a magnetic field like Earth’s. However, we can estimate what would happen if it did.

The scientists started by calculating the radiation emitted by Proxima Centauri based on observations from our Chandra X-ray Observatory. Given that amount of radiation, they estimated how much atmosphere Proxima b would be likely to lose due to ionospheric escape — a process in which the constant outpouring of charged stellar material strips away atmospheric gases.

image

With the extreme conditions likely to exist at Proxima b, the planet could lose the equivalent of Earth’s entire atmosphere in 100 million years — just a fraction of Proxima b’s 4-billion-year lifetime. Even in the best-case scenario, that much atmospheric mass escapes over 2 billion years. In other words, even if Proxima b did at one point have an atmosphere like Earth, it would likely be long gone by now.

Imagining Mars with a Different Star

We think Mars was once habitable, supporting water and an atmosphere like Earth’s. But over time, it gradually lost its atmosphere – in part because Mars, unlike Earth, doesn’t have a protective magnetic field, so Mars is exposed to much harsher radiation from the Sun's solar wind.

image

But as another rocky planet at the edge of our solar system’s habitable zone, Mars provides a useful model for a potentially habitable planet. Data from our Mars Atmosphere and Volatile Evolution, or MAVEN, mission is helping scientists answer the question: How would Mars have evolved if it were orbiting a different kind of star?

Scientists used computer simulations with data from MAVEN to model a Mars-like planet orbiting a hypothetical M-type red dwarf star. The habitable zone of such a star is much closer than the one around our Sun.

image

Being in the habitable zone that much closer to a star has repercussions. In this imaginary situation, the planet would receive about 5 to 10 times more ultraviolet radiation than the real Mars does, speeding up atmospheric escape to much higher rates and shortening the habitable period for the planet by a factor of about 5 to 20.

These results make clear just how delicate a balance needs to exist for life to flourish. But each of these methods provides a valuable new tool in the multi-faceted search for exoplanet life.  Armed with these tools, and bringing to bear a diversity of scientific perspectives, we are better positioned than ever to ask: are we alone?

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

What Scientists Are Learning from the Eclipse

While millions of people in North America headed outside to watch the eclipse on Aug. 21, 2017, hundreds of scientists got out telescopes, set up instruments, and prepared balloon launches – all so they could study the Sun and its complicated influence on Earth.

image

Total solar eclipses happen about once every 18 months somewhere in the world, but the August eclipse was rare because of its long path over land. The total eclipse lasted more than 90 minutes over land, from when it first reached Oregon to when it left the U.S. in South Carolina.

image

This meant that scientists could collect more data from land than during most eclipses, giving us new insight into our world and the star that powers it.

A moment in the Sun’s atmosphere

During a total solar eclipse, the Sun’s outer atmosphere, the corona, is visible from Earth. It’s normally too dim to see next to the Sun’s bright face, but, during an eclipse, the Moon blocks out the Sun, revealing the corona.

image

Image Credit: Peter Aniol, Miloslav Druckmüller and Shadia Habbal

Though we can study parts of the corona with instruments that create artificial eclipses, some of the innermost regions of the corona are only visible during total solar eclipses. Solar scientists think this part of the corona may hold the secrets to some of our most fundamental questions about the Sun: Like how the solar wind – the constant flow of magnetized material that streams out from the Sun and fills the solar system – is accelerated, and why the corona is so much hotter than the Sun’s surface below.  

Depending on where you were, someone watching the total solar eclipse on Aug. 21 might have been able to see the Moon completely obscuring the Sun for up to two minutes and 42 seconds. One scientist wanted to stretch that even further – so he used a pair of our WB-57 jets to chase the path of the Moon’s shadow, giving their telescopes an uninterrupted view of the solar corona for just over seven and half minutes.

image

These telescopes were originally designed to help monitor space shuttle launches, and the eclipse campaign was their first airborne astronomy project!

image

These scientists weren’t the only ones who had the idea to stretch out their view of the eclipse: The Citizen CATE project (short for Continental-America Telescopic Eclipse) did something similar, but with the help of hundreds of citizen scientists. 

Citizen CATE included 68 identical small telescopes spread out across the path of totality, operated by citizen and student scientists. As the Moon’s shadow left one telescope, it reached the next one in the lineup, giving scientists a longer look at the way the corona changes throughout the eclipse.

image

After accounting for clouds, Citizen CATE telescopes were able to collect 82 minutes of images, out of the 93 total minutes that the eclipse was over the US. Their images will help scientists study the dynamics of the inner corona, including fast solar wind flows near the Sun’s north and south poles.

The magnetized solar wind can interact with Earth’s magnetic field, causing auroras, interfering with satellites, and – in extreme cases – even straining our power systems, and all these measurements will help us better understand how the Sun sends this material speeding out into space.

Exploring the Sun-Earth connection

Scientists also used the eclipse as a natural laboratory to explore the Sun’s complicated influence on Earth.

High in Earth’s upper atmosphere, above the ozone layer, the Sun’s intense radiation creates a layer of electrified particles called the ionosphere. This region of the atmosphere reacts to changes from both Earth below and space above. Such changes in the lower atmosphere or space weather can manifest as disruptions in the ionosphere that can interfere with communication and navigation signals.

image

One group of scientists used the eclipse to test computer models of the ionosphere’s effects on these communications signals. They predicted that radio signals would travel farther during the eclipse because of a drop in the number of energized particles. Their eclipse day data – collected by scientists spread out across the US and by thousands of amateur radio operators – proved that prediction right.

In another experiment, scientists used the Eclipse Ballooning Project to investigate the eclipse’s effects lower in the atmosphere. The project incorporated weather balloon flights from a dozen locations to form a picture of how Earth’s lower atmosphere – the part we interact with and which directly affects our weather – reacted to the eclipse. They found that the planetary boundary layer, the lowest part of Earth’s atmosphere, actually moved closer to Earth during the eclipse, dropped down nearly to its nighttime altitude.

image

A handful of these balloons also flew cards containing harmless bacteria to explore the potential for contamination of other planets with Earth-born life. Earth’s stratosphere is similar to the surface of Mars, except in one main way: the amount of sunlight. But during the eclipse, the level of sunlight dropped to something closer to what you’d expect to see on Mars, making this the perfect testbed to explore whether Earth microbes could hitch a ride to the Red Planet and survive. Scientists are working through the data collected, hoping to build up better information to help robotic and human explorers alike avoid carrying bacterial hitchhikers to Mars.

image

Image: The small metal card used to transport bacteria.

Finally, our EPIC instrument aboard NOAA’s DSCOVR satellite provided awe-inspiring views of the eclipse, but it’s also helping scientists understand Earth’s energy balance. Earth’s energy system is in a constant dance to maintain a balance between incoming radiation from the Sun and outgoing radiation from Earth to space, which scientists call the Earth’s energy budget. The role of clouds, both thick and thin, is important in their effect on energy balance.

image

Like a giant cloud, the Moon during the total solar eclipse cast a large shadow across a swath of the United States. Scientists know the dimensions and light-blocking properties of the Moon, so they used ground- and space-based instruments to learn how this large shadow affects the amount of sunlight reaching Earth’s surface, especially around the edges of the shadow. Measurements from EPIC show a 10% drop in light reflected from Earth during the eclipse (compared to about 1% on a normal day). That number will help scientists model how clouds radiate the Sun’s energy – which drives our planet’s ocean currents, seasons, weather and climate – away from our planet.

For even more eclipse science updates, stay tuned to nasa.gov/eclipse.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

SpaceX Dragon breathes Astronomical Amounts of Science to Space Station

SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida. 

image

This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more. 

image

Here are some highlights of research that will be delivered to the station:

ZBLAN Fiber Optics Tested in Space!

The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.

image

When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire. 

Total and Spectral Solar Irradiance Sensor is Totally Teaching us About Earth’s Climate

The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.

image

Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.  

Sensor Monitors Space Station Environment for Space Junk

The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.

image

Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola. 

Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.

Self-Assembling and Self-Replicating Materials in Space!

Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions. 

image

The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium. 

Melting Plastics in Microgravity

The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.

image

These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.  

Studying Slime (or…Algae, at Least) on the Space Station

Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.

image

The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important. 

Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!

For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.


Tags
7 years ago

The Birth of a New Island

image

In late December 2014, an underwater volcano in the South Pacific Kingdom of Tonga erupted and sent a violent stream of steam, ash and rock into the air. The ash plumes rose as high as 30,000 feet (9 kilometers) into the sky and diverted airline flights.

Most new oceanic islands often wash away quickly within a few months. The island doesn't have an official name, and is referred to as Hunga Tonga-Hunga Ha'apai after two older islands to either side.

But this island was different. One of our satellites that detects volcanic eruptions alerted our scientists who were very excited because this type of explosive, undersea eruption is rare. In fact, the new Tongan island is one of only three of this kind of volcanic islands in the past 150 years to emerge and survive. It's now three years old.

Zooming in from Space

image

The baby island is also the first of its kind to emerge in the modern satellite era. This is really important since it's difficult to send our researchers the South Pacific every month to see how the island has changed – which it did very rapidly, especially in the first six months. But satellites in space delivered monthly views which we used to make these high resolution, 3-D topographic maps. With these maps, we tracked the early life and evolution of the island in unprecedented detail.

image

In April 2015, we watched an isthmus bridge begin forming from the new island to the older island neighboring it to the east. Soft volcanic material, especially on the island's southern side, was eroded by the ocean and deposited on the tail end, which grew and grew till it reached the other island. It's about 1600 feet (500 meters) across, or the length of 5 football fields.

image

The erosive forces of the ocean broke down the southern wall of the crater lake in May 2015. We thought this might mean that the island wouldn't last much longer because the ocean could now attack the interior of the island's tuff cone. But in June, a sandbar formed, closing off the lake again and protecting the interior. The sandbar has been in place ever since.

Monitoring these changes of both erosion and growth, we now believe that the island will last from between 6 to 30 years!

Terranauts!

image

Why has the island survived for three years? What makes eroding it away harder than for other blink-and-you-miss-it oceanic islands that disappear into the sea after a few months? To answer these questions, we need rock samples.

Working with the Tongan government, we recruited two French citizens sailing around the world who were in Tongan waters in June, 2017, to go to the new island on our behalf. We treated them like astronauts and gave them instructions to take pictures and samples of the volcanic rocks at locations we could see from space along the coasts, the interior of the crater lake, and from the top of the tuff cone.

image

They did a fantastic job documenting each sample and where it came from, and then mailed the box of rocks back to our team at our Goddard Space Flight Center in Greenbelt, Maryland, where they are currently being analyzed. We believe that after the eruption, warm seawater mixed with volcanic ash to chemically alter it so that when it hardened into rock it was a tougher material. We're excited to see if the rock samples confirm this.

From Earth to Mars

image

Link: https://svs.gsfc.nasa.gov/11372

Did these Martian volcanoes form in an ocean or lake? If they did, wet environments such as these combined with heat from volcanic processes may be prime locations to search for evidence of past life. We may not know until we arrive on the red planet, but by studying Earth's landforms, we'll be better prepared when we do.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

The California Wildfires from Above

As massive wildfires continue to rage in southern California, our satellites, people in space and aircraft are keeping an eye on the blazes from above. 

This data and imagery not only gives us a better view of the activity, but also helps first responders plan their course of action. 

image

A prolonged spell of dry weather primed the area for major fires. The largest of the blazes – the fast-moving Thomas fire in Ventura County – charred more than 65,000 acres.

image

Powerful Santa Ana winds fanned the flames and forecasters with the LA office of the National Weather Service warned that the region is in the midst of its strongest and longest Santa Ana wind event of the year. 

These winds are hot, dry and ferocious. They can whip a small brush fire into a raging inferno in just hours.

image

Our Aqua satellite captured the above natural-color image on Dec. 5. Actively burning areas are outlined in red. Each hot spot is an area where the thermal detectors on the satellite recognized temperatures higher than the background.

image

On the same day, the European Space Agency’s Sentinel-2 satellite captured the data for the above false-color image of the burn scar. This image uses observations of visible, shortwave infrared and near infrared light.

image

From the vantage point of space, our satellites and astronauts are able to see a more comprehensive view of the activity happening on the ground. 

image

The crew living and working 250 miles above Earth on the International Space Station passed over the fires on Dec. 6. The above view was taken by astronaut Randy Bresnik as the station passed over southern California.

image

During an engineering flight test of our Cloud-Aerosol Multi-Angle Lidar (CAMAL) instrument, a view from our ER-2 high-altitude research aircraft shows smoke plumes. From this vantage point at roughly 65,000 feet, the Thomas Fire was seen as it burned on Dec. 5.

image

Our satellites can even gather data and imagery of these wildfires at night. The above image on the right shows a nighttime view of the fires on Dec. 5. 

For comparison, the image on the left shows what this region looked like the day before. Both images were taken by the Suomi NPP satellite, which saw the fires by using a special “day-night band” to detect light in a range of wavelengths from green to near-infrared and uses light intensification to detect dim signals.

image

Having the capability to see natural disasters, like these wildfires in southern California, provides first responders with valuable information that helps guide their action in the field.

For more wildfire updates, visit: nasa.gov/fires.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
7 years ago

Small Business Saturday: Space Edition!

Today is Small Business Saturday, an annual campaign that American Express started back in 2010 on the Saturday after Thanksgiving to support “local places that make our communities strong.”

Small Business Saturday: Space Edition!

The U.S. Senate has even taken note by passing a bipartisan resolution recognizing November 25, 2017 as Small Business Saturday: “an opportunity for all Americans to rally behind these local, independently-owned businesses and support the entrepreneurs who keep our families employed.”

Here at NASA, we look to promote and integrate small businesses across the country into the work we do to pioneer the future of space exploration, scientific discovery and aeronautics research.

Our Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) program seeks to fund the research, development and demonstration of innovative technologies that help address space exploration challenges and have significant potential for commercialization. In fiscal year 2017, our program awarded 567 contracts to 277 small businesses and 44 research institutions for a total of $173.5M that will enable our future missions into deep space and advancements in aviation and science, while also benefiting the U.S. economy. This year, the SBIR/STTR program’s Economic Impact Report indicated a $2.74 return for every dollar spent on awards—money well spent!

Small Business Saturday: Space Edition!

Our small business partners’ ideas have helped our work become more efficient and have advanced scientific knowledge on the International Space Station. Over 800 small businesses are contributing to the development of our Space Launch System rocket that will carry humans to deep space. SBIR/STTR program awardees are also helping the Curiosity Rover get around Mars and are even preparing the Mars 2020 Rover to search for signs of potential life on the Red Planet.

image

Small businesses are also contributing to scientific advances here on Earth like helping our satellites get a clearer picture of soil moisture in order to support water management, agriculture, and fire, flood and drought hazard monitoring.

image

In an effort to improve our understanding of the Arctic and Antarctica, a small business developed a cost-saving unmanned aircraft system that could withstand some of the coldest temperatures on the planet.

image

Does your small business have a big idea? Your next opportunity to join the SBIR/STTR program starts on January 11, 2018 when our latest solicitation opens. 

We’ll be seeking new ideas from small businesses and research institutions for research, development and demonstration of innovative technologies. Go to www.nasa.sbir.gov to learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: 10 Things to Know This Week

The Living Planet Edition

Whether it's crops, forests or phytoplankton blooms in the ocean, our scientists are tracking life on Earth. Just as satellites help researchers study the atmosphere, rainfall and other physical characteristics of the planet, the ever-improving view from above allows them to study Earth's interconnected life.

1. Life on Earth, From Space

image

While we (NASA) began monitoring life on land in the 1970s with the Landsat satellites, this fall marks 20 years since we've continuously observed all the plant life at the surface of both the land and ocean. The above animation captures the entirety of two decades of observations.

2. Watching the World Breathe

With the right tools, we can see Earth breathe. With early weather satellite data in the 1970s and '80s, NASA Goddard scientist Compton Tucker was able to see plants' greening and die-back from space. He developed a way of comparing satellite data in two wavelengths.

image

When healthy plants are stocked with chlorophyll and ready to photosynthesize to make food (and absorb carbon dioxide), leaves absorb red light but reflect infrared light back into space. By comparing the ratio of red to infrared light, Tucker and his colleagues could quantify vegetation covering the land.

Expanding the study to the rest of the globe, the scientists could track rainy and dry seasons in Africa, see the springtime blooms in North America, and wildfires scorching forests worldwide.

3. Like Breathing? Thank Earth's Ocean

image

But land is only part of the story. The ocean is home to 95 percent of Earth's living space, covering 70 percent of the planet and stretching miles deep. At the base of the ocean's food web is phytoplankton - tiny plants that also undergo photosynthesis to turn nutrients and carbon dioxide into sugar and oxygen. Phytoplankton not only feed the rest of ocean life, they absorb carbon dioxide - and produce about half the oxygen we breathe.

image

In the Arctic Ocean, an explosion of phytoplankton indicates change. As seasonal sea ice melts, warming waters and more sunlight will trigger a sudden, massive phytoplankton bloom that feeds birds, sea lions and newly-hatched fish. But with warming atmospheric temperatures, that bloom is now happening several weeks earlier - before the animals are in place to take advantage of it.

4. Keeping an Eye on Crops

The "greenness" measurement that scientists use to measure forests and grasslands can also be used to monitor the health of agricultural fields. By the 1980s, food security analysts were approaching NASA to see how satellite images could help with the Famine Early Warning System to identify regions at risk - a partnership that continues today.

image

With rainfall estimates, vegetation measurements, as well as the recent addition of soil moisture information, our scientists can help organizations like USAID direct emergency help.

The view from space can also help improve agricultural practices. A winery in California, for example, uses individual pixels of Landsat data to determine when to irrigate and how much water to use.

5. Coming Soon to the International Space Station

image

A laser-based instrument being developed for the International Space Station will provide a unique 3-D view of Earth's forests. The instrument, called GEDI, will be the first to systematically probe the depths of the forests from space.

image

Another ISS instrument in development, ECOSTRESS, will study how effectively plants use water. That knowledge provided on a global scale from space will tell us "which plants are going to live or die in a future world of greater droughts," said Josh Fisher, a research scientist at NASA's Jet Propulsion Laboratory and science lead for ECOSTRESS.

6. Seeing Life, From the Microscopic to Multicellular

Scientists have used our vantage from space to study changes in animal habitats, track disease outbreaks, monitor forests and even help discover a new species. Bacteria, plants, land animals, sea creatures and birds reveal a changing world.

image

Our Black Marble image provides a unique view of human activity. Looking at trends in our lights at night, scientists can study how cities develop over time, how lighting and activity changes during certain seasons and holidays, and even aid emergency responders during power outages caused by natural disasters.

7. Earth as Analog and Proving Ground

Just as our Mars rovers were tested in Earth's deserts, the search for life on ocean moons in our solar system is being refined by experiments here. JPL research scientist Morgan Cable looks for life on the moons of Jupiter and Saturn. She cites satellite observations of Arctic and Antarctic ice fields that are informing the planning for a future mission to Europa, an icy moon of Jupiter.

image

The Earth observations help researchers find ways to date the origin of jumbled, chaotic ice. "When we visit Europa, we want to go to very young places, where material from that ocean is being expressed on the surface," she explained. "Anywhere like that, the chances of finding biomarkers goes up - if they're there."

8. Only One Living Planet

Today, we know of only one living planet: our own. The knowledge and tools NASA developed to study life here are among our greatest assets as we begin the search for life beyond Earth.

image

There are two main questions: With so many places to look, how can we home in on the places most likely to harbor life? What are the unmistakable signs of life - even if it comes in a form we don't fully understand? In this early phase of the search, "We have to go with the only kind of life we know," said Tony del Genio, co-lead of a new NASA interdisciplinary initiative to search for life on other worlds.

Solar System: 10 Things To Know This Week

So, the focus is on liquid water. Even bacteria around deep-sea vents that don't need sunlight to live need water. That one necessity rules out many planets that are too close or too far from their stars for water to exist, or too far from us to tell. Our Galileo and Cassini missions revealed that some moons of Jupiter and Saturn are not the dead rocks astronomers had assumed, but appear to have some conditions needed for life beneath icy surfaces.

9. Looking for Life Beyond Our Solar System

In the exoplanet (planets outside our solar system that orbit another star) world, it's possible to calculate the range of distances for any star where orbiting planets could have liquid water. This is called the star's habitable zone. Astronomers have already located some habitable-zone planets, and research scientist Andrew Rushby of NASA Ames Research Center is researching ways to refine the search. "An alien would spot three planets in our solar system in the habitable zone [Earth, Mars and Venus]," Rushby said, "but we know that 67 percent of those planets are not inhabited."

image

He recently developed a model of Earth's carbon cycle and combined it with other tools to study which planets in habitable zones would be the best targets to look for life, considering probable tectonic activity and water cycles. He found that larger planets are more likely than smaller ones to have surface temperatures conducive to liquid water. Other exoplanet researchers are looking for rocky worlds, and biosignatures, the chemical signs of life.

10. You Can Learn a Lot from a Dot

When humans start collecting direct images of exoplanets, even the closest ones will appear as only a handful of pixels in the detector - something like the famous "blue dot" image of Earth from Saturn. What can we learn about life on these planets from a single dot?

image

Stephen Kane of the University of California, Riverside, has come up with a way to answer that question by using our EPIC camera on NOAA's DSCOVR satellite. "I'm taking these glorious pictures and collapsing them down to a single pixel or handful of pixels," Kane explained. He runs the light through a noise filter that attempts to simulate the interference expected from an exoplanet mission. By observing how the brightness of Earth changes when mostly land is in view compared with mostly water, Kane reverse-engineers Earth's rotation rate - something that has yet to be measured directly for exoplanets.

The most universal, most profound question about any unknown world is whether it harbors life. The quest to find life beyond Earth is just beginning, but it will be informed by the study of our own living planet.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Resupply Mission Brings Mealworms and Mustard Seeds to Space Station

Orbital ATK will launch its Cygnus cargo spacecraft to the International Space Station on November 11, 2017 from Wallops Flight Facility in Virginia. It will be packed with cargo and scientific experiments for the six humans currently living and working on the orbiting laboratory.

image

The cargo spacecraft is named the S.S. Gene Cernan after former NASA astronaut Eugene Cernan, who is the last man to have walked on the moon.

image

Here are some of the really neat science and research experiments that will be delivered to the station: 

What’s Microgravity Got to do with Bacterial Antibiotics?

Antibiotic resistance could pose a danger to astronauts, especially since microgravity has been shown to weaken human immune response. E. coli AntiMicrobial Satellite (EcAMSat) will study microgravity’s effect on bacterial antibiotic resistance.

image

Results from this experiment could help us determine appropriate antibiotic dosages to protect astronaut health during long-duration human spaceflight and help us understand how antibiotic effectiveness may change as a function of stress on Earth.

Laser Beams…Not on Sharks…But on a CubeSat

Traditional laser communication systems use transmitters that are far too large for small spacecraft. The Optical Communication Sensor Demonstration (OCSD) tests the functionality of laser-based communications using CubeSats that provide a compact version of the technology.

image

Results from OCSD could lead to improved GPS and other satellite networks on Earth and a better understanding of laser communication between small satellites in low-Earth orbit.

This Hybrid Solar Antenna Could Make Space Communication Even Better 

As space exploration increases, so will the need for improved power and communication technologies. The Integrated Solar Array and Reflectarray Antenna (ISARA), a hybrid power and communication solar antenna that can send and receive messages, tests the use of this technology in CubeSat-based environmental monitoring. 

image

ISARA may provide a solution for sending and receiving information to and from faraway destinations, both on Earth and in space. 

More Plants in Space!  

Ready for a mouthful…The Biological Nitrogen Fixation in Microgravity via Rhizobium-Legume Symbiosis…aka the Biological Nitrogen Fixation experiment, will examine how low-gravity conditions affect the nitrogen fixation process of the Microclover legume (a plant in the pea family). Nitrogen fixation is a process where nitrogen in the atmosphere is converted into ammonia. This crucial element of any ecosystem is also a natural fertilizer that is necessary for most types of plant growth.

image

This experiment could tell us about the space viability of the legume’s ability to use and recycle nutrients and give researchers a better understanding of this plant’s potential uses on Earth.

What Happens When Mealworms Live in Space?

Mealworms are high in nutrients and one of the most popular sources of alternative protein in developing countries. The Effects of Microgravity on the Life Cycle of Tenebrio Molitor (Tenebrio Molitor) investigation studies how the microgravity environment affects the mealworm life cycle.

image

In addition to alternative protein research, this investigation will provide information about animal growth under unique conditions.

Mustard Seeds in Microgravity 

The Life Cycle of Arabidopsis thaliana in Microgravity experiment studies the formation and functionality of the Arabidopsis thaliana, a mustard plant with a genome that is fully mapped, in microgravity conditions.

image

The results from this investigation could contribute to an understanding of plant and crop growth in space.

Follow @ISS_Research on Twitter for more information about the science happening on space station. 

Watch the launch live HERE on Nov. 11, liftoff is scheduled for 7:37 a.m. EDT!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

13 Reasons to Have an Out-of-This-World Friday (the 13th)

1. Not all of humanity is bound to the ground

image

Since 2000, the International Space Station has been continuously occupied by humans. There, crew members live and work while conducting important research that benefits life on Earth and will even help us eventually travel to deep space destinations, like Mars.

2. We’re working to develop quieter supersonic aircraft that would allow you to travel from New York to Los Angeles in 2 hours

image

We are working hard to make flight greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently. Seventy years after Chuck Yeager broke the sound barrier in the Bell X-1 aircraft, we’re continuing that supersonic X-plane legacy by working to create a quieter supersonic jet with an aim toward passenger flight.

3. The spacecraft, rockets and systems developed to send astronauts to low-Earth orbit as part of our Commercial Crew Program is also helping us get to Mars

Changes to the human body during long-duration spaceflight are significant challenges to solve ahead of a mission to Mars and back. The space station allows us to perform long duration missions without leaving Earth’s orbit.

image

Although they are orbiting Earth, space station astronauts spend months at a time in near-zero gravity, which allows scientists to study several physiological changes and test potential solutions. The more time they spend in space, the more helpful the station crew members can be to those on Earth assembling the plans to go to Mars.

4. We’re launching a spacecraft in 2018 that will go “touch the Sun”

image

In the summer of 2018, we’re launching Parker Solar Probe, a spacecraft that will get closer to the Sun than any other in human history. Parker Solar Probe will fly directly through the Sun’s atmosphere, called the corona. Getting better measurements of this region is key to understanding our Sun. 

For instance, the Sun releases a constant outflow of solar material, called the solar wind. We think the corona is where this solar wind is accelerated out into the solar system, and Parker Solar Probe’s measurements should help us pinpoint how that happens.  

5. You can digitally fly along with spacecraft…that are actually in space…in real-time!

image

NASA’s Eyes are immersive, 3D simulations of real events, spacecraft locations and trajectories. Through this interactive app, you can experience Earth and our solar system, the universe and the spacecraft exploring them. Want to watch as our Juno spacecraft makes its next orbit around Juno? You can! Or relive all of the Voyager mission highlights in real-time? You can do that too! Download the free app HERE to start exploring.

6. When you feel far away from home, you can think of the New Horizons spacecraft as it heads toward the Kuiper Belt, and the Voyager spacecraft are beyond the influence of our sun…billions of miles away

image

Our New Horizons spacecraft completed its Pluto flyby in July 2015 and has continued on its way toward the Kuiper Belt. The spacecraft continues to send back important data as it travels toward deeper space at more than 32,000 miles per hour, and is ~3.2 billion miles from Earth.

image

In addition to New Horizons, our twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-37-year journey since their 1977 launches, they are each much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between the stars, filled with material ejected by the death of nearby stars millions of years ago.

7. There are humans brave enough to not only travel in space, but venture outside space station to perform important repairs and updates during spacewalks

image

Just this month (October 2017) we’ve already had two spacewalks on the International Space Station...with another scheduled on Oct. 20. 

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. These activities can also be referred to as EVAs – Extravehicular Activities. Not only do spacewalks require an enormous amount of work to prepare for, but they are physically demanding on the astronauts. They are working in the vacuum of space in only their spacewalking suit. 

8. Smart people are up all night working in control rooms all over NASA to ensure that data keeps flowing from our satellites and spacecraft

image

Our satellites and spacecraft help scientists study Earth and space. Missions looking toward Earth provide information about clouds, oceans, land and ice. They also measure gases in the atmosphere, such as ozone and carbon dioxide and the amount of energy that Earth absorbs and emits. And satellites monitor wildfires, volcanoes and their smoke.

9. A lot of NASA-developed tech has been transferred for use to the public

Our Technology Transfer Program highlights technologies that were originally designed for our mission needs, but have since been introduced to the public market. HERE are a few spinoff technologies that you might not know about.

10. We have a spacecraft currently traveling  to an asteroid to collect a sample and bring it back to Earth

image

OSIRIS-REx is our first-ever mission that will travel to an asteroid and bring a sample of it back to Earth. Currently, the spacecraft is on its way to asteroid Bennu where it will survey and map the object before it “high-fives” the asteroid with its robotic arm to collect a sample, which it will send to Earth.

If everything goes according to plan, on Sept. 24, 2023, the capsule containing the asteroid sample will make a soft landing in the Utah desert.

11. There are Earth-sized planets outside our solar system that may be habitable

To date, we have confirmed 3,000+ exoplanets, which are planets outside our solar system that orbit a Sun-like star. Of these 3,000, some are in the habitable zone – where the temperature is just right for liquid water to exist on the surface.  

image

Recently, our Spitzer Space Telescope revealed the first known system of SEVEN Earth-size planets around a single star. Three of these plants are firmly in the habitable zone, and could have liquid water on the surface, which is key to life as we know it.

12. Earth looks like art from space

image

In 1960, the United States put its first Earth-observing environmental satellite into orbit around the planet. Over the decades, these satellites have provided invaluable information, and the vantage point of space has provided new perspectives on Earth.

image

The beauty of Earth is clear, and the artistry ranges from the surreal to the sublime.

13. We’re building a telescope that will be able to see the first stars ever formed in the universe

image

Wouldn’t it be neat to see a period of the universe’s history that we’ve never seen before? That’s exactly what the James Webb Space Telescope (JWST) will be able to do…plus more!

Specifically, Webb will see the first objects that formed as the universe cooled down after the Big Bang. We don’t know exactly when the universe made the first stars and galaxies – or how for that matter. That is what we are building Webb to help answer.

Happy Friday the 13th! We hope it’s out-of-this-world!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: Things to Know This Week

Add to your electronic bookshelf with these free e-books from NASA!

1. The Saturn System Through the Eyes of Cassini

Solar System: Things To Know This Week

This work features 100 images highlighting Cassini's 13-year tour at the ringed giant.

2. Earth as Art 

Solar System: Things To Know This Week

Explore our beautiful home world as seen from space.

3. Meatballs and more 

Solar System: Things To Know This Week

Emblems of Exploration showcases the rich history of space and aeronautic logos.

4. Ready for Our Close Up

Solar System: Things To Know This Week

Hubble Focus: Our Amazing Solar System showcases the wonders of our galactic neighborhood.

5. NASA's First A 

Solar System: Things To Know This Week

This book dives into the role aeronautics plays in our mission of engineering and exploration.

6. See More 

Solar System: Things To Know This Week

Making the Invisible Visible outlines the rich history of infrared astronomy.

7. Ready for a Deeper Dive? 

Solar System: Things To Know This Week

The NASA Systems Engineering Handbook describes how we get the job done.

8. Spoiler Alert

Solar System: Things To Know This Week

The space race really heats up in the third volume of famed Russian spacecraft designer Boris Chertok memoirs. Chertok, who worked under the legendary Sergey Korolev, continues his fascinating narrative on the early history of the Soviet space program, from 1961 to 1967 in Rockets and People III.

9. Take a Walk on the Wild Side

Solar System: Things To Know This Week

The second volume of Walking to Olympus explores the 21st century evolution of spacewalks.

10. No Library Card Needed 

Find your own great read in NASA's free e-book library.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

The Daredevil Spacecraft That Will Touch the Sun

In the summer of 2018, we’re launching Parker Solar Probe, a spacecraft that will get closer to the Sun than any other in human history.

image

Parker Solar Probe will fly directly through the Sun’s atmosphere, called the corona. Getting better measurements of this region is key to understanding our Sun. For instance, the Sun releases a constant outflow of solar material, called the solar wind. We think the corona is where this solar wind is accelerated out into the solar system, and Parker Solar Probe’s measurements should help us pinpoint how that happens.  

image

The solar wind, along with other changing conditions on the Sun and in space, can affect Earth and are collectively known as space weather. Space weather can trigger auroras, create problems with satellites, cause power outages (in extreme cases), and disrupt our communications signals. That’s because space weather interacts with Earth’s upper atmosphere, where signals like radio and GPS travel from place to place.

image

Parker Solar Probe is named after pioneering physicist Gene Parker. In the 1950s, Parker proposed a number of concepts about how stars — including our Sun — give off energy. He called this cascade of energy the solar wind. Parker also theorized an explanation for the superheated solar atmosphere, the corona, which is hotter than the surface of the Sun itself.

image

Getting the answers to our questions about the solar wind and the Sun’s energetic particles is only possible by sending a probe right into the furnace of the Sun’s corona, where the spacecraft can reach 2,500 degrees Fahrenheit. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.

Over the course of its seven-year mission, Parker Solar Probe will make two dozen close approaches to the Sun, continuously breaking its own records and sending back unprecedented science data.

image

Getting close to the Sun is harder than you might think, since the inertia of a spacecraft launched from Earth will naturally carry it in repeated orbits on roughly the same path. To nudge the orbit closer to the Sun on successive trips, Parker Solar Probe will use Venus’ gravity.

This is a technique called a gravity assist, and it’s been used by Voyager, Cassini, and OSIRIS-REx, among other missions. Though most missions use gravity assists to speed up, Parker Solar Probe is using Venus’ gravity to slow down. This will let the spacecraft fall deeper into the Sun’s gravity and get closer to our star than any other spacecraft in human history.

image

Get a behind-the-scenes view of the Parker Solar Probe under construction in a clean room on the NASA Sun Science Facebook page.

image

Keep up with all the latest on Parker Solar Probe at nasa.gov/solarprobe or on Twitter @NASASun.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Webb 101: 10 Facts about the James Webb Space Telescope

Did you know…?

image

1. Our upcoming James Webb Space Telescope will act like a powerful time machine – because it will capture light that’s been traveling across space for as long as 13.5 billion years, when the first stars and galaxies were formed out of the darkness of the early universe.

image

2. Webb will be able to see infrared light. This is light that is just outside the visible spectrum, and just outside of what we can see with our human eyes.

image

3. Webb’s unprecedented sensitivity to infrared light will help astronomers to compare the faintest, earliest galaxies to today's grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years.

image

Hubble’s infrared look at the Horsehead Nebula. Credit: NASA/ESA/Hubble Heritage Team

4. Webb will be able to see right through and into massive clouds of dust that are opaque to visible-light observatories like the Hubble Space Telescope. Inside those clouds are where stars and planetary systems are born.

image

5. In addition to seeing things inside our own solar system, Webb will tell us more about the atmospheres of planets orbiting other stars, and perhaps even find the building blocks of life elsewhere in the universe.

image

Credit: Northrop Grumman

6. Webb will orbit the Sun a million miles away from Earth, at the place called the second Lagrange point. (L2 is four times further away than the moon!)

image

7. To preserve Webb’s heat sensitive vision, it has a ‘sunshield’ that’s the size of a tennis court; it gives the telescope the equivalent of SPF protection of 1 million! The sunshield also reduces the temperature between the hot and cold side of the spacecraft by almost 600 degrees Fahrenheit.

image

8.  Webb’s 18-segment primary mirror is over 6 times bigger in area than Hubble's and will be ~100x more powerful. (How big is it? 6.5 meters in diameter.)

image

9.  Webb’s 18 primary mirror segments can each be individually adjusted to work as one massive mirror. They’re covered with a golf ball's worth of gold, which optimizes them for reflecting infrared light (the coating is so thin that a human hair is 1,000 times thicker!).

image

10. Webb will be so sensitive, it could detect the heat signature of a bumblebee at the distance of the moon, and can see details the size of a US penny at the distance of about 40 km.

image

BONUS!  Over 1,200 scientists, engineers and technicians from 14 countries (and more than 27 U.S. states) have taken part in designing and building Webb. The entire project is a joint mission between NASA and the European and Canadian Space Agencies. The telescope part of the observatory was assembled in the world’s largest cleanroom at our Goddard Space Flight Center in Maryland.

Webb is currently at Northrop Grumman where the telescope will be mated with the spacecraft and undergo final testing. Once complete, Webb will be packed up and be transported via boat to its launch site in French Guiana, where a European Space Agency Ariane 5 rocket will take it into space.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Observing the Ozone Hole from Space: A Science Success Story

Using our unique ability to view Earth from space, we are working together with NOAA to monitor an emerging success story – the shrinking ozone hole over Antarctica.

image

Thirty years ago, the nations of the world agreed to the landmark ‘Montreal Protocol on Substances that Deplete the Ozone Layer.’ The Protocol limited the release of ozone-depleting chlorofluorocarbons (CFCs) into the atmosphere.

image

Since the 1960s our scientists have worked with NOAA researchers to study the ozone layer. 

image

We use a combination of satellite, aircraft and balloon measurements of the atmosphere.

image

The ozone layer acts like a sunscreen for Earth, blocking harmful ultraviolet, or UV, rays emitted by the Sun.

image

In 1985, scientists first reported a hole forming in the ozone layer over Antarctica. It formed over Antarctica because the Earth’s atmospheric circulation traps air over Antarctica.  This air contains chlorine released from the CFCs and thus it rapidly depletes the ozone.

image

Because colder temperatures speed up the process of CFCs breaking up and releasing chlorine more quickly, the ozone hole fluctuates with temperature. The hole shrinks during the warmer summer months and grows larger during the southern winter. In September 2006, the ozone hole reached a record large extent.

image

But things have been improving in the 30 years since the Montreal Protocol. Thanks to the agreement, the concentration of CFCs in the atmosphere has been decreasing, and the ozone hole maximum has been smaller since 2006’s record.

image

That being said, the ozone hole still exists and fluctuates depending on temperature because CFCs have very long lifetimes. So, they still exist in our atmosphere and continue to deplete the ozone layer.

To get a view of what the ozone hole would have looked like if the world had not come to the agreement to limit CFCs, our scientists developed computer models. These show that by 2065, much of Earth would have had almost no ozone layer at all.

image

Luckily, the Montreal Protocol exists, and we’ve managed to save our protective ozone layer. Looking into the future, our scientists project that by 2065, the ozone hole will have returned to the same size it was thirty years ago.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Cassini Mission: What’s Next?

It’s Friday, Sept. 15 and our Cassini mission has officially come to a spectacular end. The final signal from the spacecraft was received here on Earth at 7:55 a.m. EDT after a fateful plunge into Saturn’s atmosphere.

image

After losing contact with Earth, the spacecraft burned up like a meteor, becoming part of the planet itself.

image

Although bittersweet, Cassini’s triumphant end is the culmination of a nearly 20-year mission that overflowed with discoveries.

But, what happens now?

Mission Team and Data

Now that the spacecraft is gone, most of the team’s engineers are migrating to other planetary missions, where they will continue to contribute to the work we’re doing to explore our solar system and beyond.

image

Mission scientists will keep working for the coming years to ensure that we fully understand all of the data acquired during the mission’s Grand Finale. They will carefully calibrate and study all of this data so that it can be entered into the Planetary Data System. From there, it will be accessible to future scientists for years to come.

image

Even beyond that, the science data will continue to be worked on for decades, possibly more, depending on the research grants that are acquired.

Other team members, some who have spent most of their career working on the Cassini mission, will use this as an opportunity to retire.

Future Missions

In revealing that Enceladus has essentially all the ingredients needed for life, the mission energized a pivot to the exploration of “ocean worlds” that has been sweeping planetary science over the past couple of decades.

image

Jupiter’s moon Europa has been a prime target for future exploration, and many lessons during Cassini’s mission are being applied in planning our Europa Clipper mission, planned for launch in the 2020s.

image

The mission will orbit the giant planet, Jupiter, using gravitational assists from large moons to maneuver the spacecraft into repeated close encounters, much as Cassini has used the gravity of Titan to continually shape the spacecraft’s course.

In addition, many engineers and scientists from Cassini are serving on the new Europa Clipper mission and helping to shape its science investigations. For example, several members of the Cassini Ion and Neutral Mass Spectrometer team are developing an extremely sensitive, next-generation version of their instrument for flight on Europa Clipper. What Cassini has learned about flying through the plume of material spraying from Enceladus will be invaluable to Europa Clipper, should plume activity be confirmed on Europa.

image

In the decades following Cassini, scientists hope to return to the Saturn system to follow up on the mission's many discoveries. Mission concepts under consideration include robotic explorers to drift on the methane seas of Titan and fly through the Enceladus plume to collect and analyze samples for signs of biology.

image

Atmospheric probes to all four of the outer planets have long been a priority for the science community, and the most recent recommendations from a group of planetary scientists shows interest in sending such a mission to Saturn. By directly sampling Saturn's upper atmosphere during its last orbits and final plunge, Cassini is laying the groundwork for an potential Saturn atmospheric probe.

image

A variety of potential mission concepts are discussed in a recently completed study — including orbiters, flybys and probes that would dive into Uranus' atmosphere to study its composition. Future missions to the ice giants might explore those worlds using an approach similar to Cassini's mission.

Learn more about the Cassini mission and its Grand Finale HERE.

Follow the mission on Facebook and Twitter for the latest updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

New Research Heading to Earth’s Orbiting Laboratory

It’s a bird! It’s a plane! It’s a…dragon? A SpaceX Dragon spacecraft is set to launch into orbit atop the Falcon 9 rocket toward the International Space Station for its 12th commercial resupply (CRS-12) mission August 14 from our Kennedy Space Center in Florida.

image

It won’t breathe fire, but it will carry science that studies cosmic rays, protein crystal growth, bioengineered lung tissue.

image

Here are some highlights of research that will be delivered:

I scream, you scream, we all scream for ISS-CREAM! 

Cosmic Rays, Energetics and Mass, that is! Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (ISS-CREAM) instrument measures the charges of cosmic rays ranging from hydrogen to iron nuclei. Cosmic rays are pieces of atoms that move through space at nearly the speed of light

image

The data collected from the instrument will help address fundamental science questions such as:

Do supernovae supply the bulk of cosmic rays?

What is the history of cosmic rays in the galaxy?

Can the energy spectra of cosmic rays result from a single mechanism?

ISS-CREAM’s three-year mission will help the scientific community to build a stronger understanding of the fundamental structure of the universe.

Space-grown crystals aid in understanding of Parkinson’s disease

The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. 

image

Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will utilize the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.

image

Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and could aid in the development of therapies against this target.

Mice Help Us Keep an Eye on Long-term Health Impacts of Spaceflight

Our eyes have a whole network of blood vessels, like the ones in the image below, in the retina—the back part of the eye that transforms light into information for your brain. We are sending mice to the space station (RR-9) to study how the fluids that move through these vessels shift their flow in microgravity, which can lead to impaired vision in astronauts.

image

By looking at how spaceflight affects not only the eyes, but other parts of the body such as joints, like hips and knees, in mice over a short period of time, we can develop countermeasures to protect astronauts over longer periods of space exploration, and help humans with visual impairments or arthritis on Earth.

Telescope-hosting nanosatellite tests new concept

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload, including an off-the-shelf telescope. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations, such as tracking severe weather and detecting natural disasters.

image

Sponsored by the ISS National Laboratory, the overall mission goal for this investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.

Growth of lung tissue in space could provide information about diseases

The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.

image

The goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

These crazy-cool investigations and others launching aboard the next SpaceX #Dragon cargo spacecraft on August 14. They will join many other investigations currently happening aboard the space station. Follow @ISS_Research on Twitter for more information about the science happening on 250 miles above Earth on the space station.  

Watch the launch live HERE starting at 12:20 p.m. EDT on Monday, Aug. 14!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Curiosity Rover: Five Years on Mars

The evening of August 5, 2012…five years ago…our Mars Curiosity rover landed on the Red Planet. 

image

Arriving at Mars at 10:32 p.m. PDT (morning of Aug 6 EDT), this rover would prove to be the most technologically advanced rover ever built.

image

Curiosity used a series of complicated landing maneuvers never before attempted. 

image

The specialized landing sequence, which employed a giant parachute, a jet-controlled descent vehicle and a daring “sky crane” maneuver similar to rappelling was devised because testing and landing techniques used during previous rover missions could not safely accommodate the much larger and heavier rover.

Curiosity’s mission: To determine whether the Red Planet ever was, or is, habitable to microbial life.

image

The car-size rover is equipped with 17 cameras, a robotic arm, specialized instruments and an on-board laboratory.

image

Let’s explore Curiosity’s top 5 discoveries since she landed on Mars five years ago…

1. Gale Crater had conditions suitable for life about 3.5 billion years ago

image

In 2013, Curiosity’s analysis of a rock sample showed that ancient Mars could have supported living microbes. Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon – some of the key chemical ingredients for life – in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater.

image

Later, in 2014, Curiosity discovered that these conditions lasted for millions of years, perhaps much longer. This interpretation of Curiosity’s findings in Gale Crater suggests ancient Mars maintained a climate that could have produced long-lasting lakes at many locations on the Red Planet.

2. Organic molecules detected at several locations

image

In 2014, our Curiosity rover drilled into the Martian surface and detected different organic chemicals in the rock powder. This was the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites. 

image

Curiosity's findings from analyzing samples of atmosphere and rock powder do not reveal whether Mars has ever harbored living microbes, but the findings do shed light on a chemically active modern Mars and on favorable conditions for life on ancient Mars.

3. Present and active methane in Mars’ atmosphere

image

Also in 2014, our Curiosity rover measured a tenfold spike in methane, an organic chemical, in the atmosphere around the planet. This temporary increase in methane tells us there must be some relatively localized source.

image

Researchers used Curiosity’s onboard Sample Analysis at Mars (SAM) laboratory a dozen times in a 20-month period to sniff methane in the atmosphere. During two of those months, in late 2013 and early 2014, four measurements averaged seven parts per billion.

4. Radiation could pose health risks for humans

image

Measurements taken by our Curiosity rover since launch have provided us with the information needed to design systems to protect human explorers from radiation exposure on deep-space expeditions in the future. Curiosity’s Radiation Assessment Detector (RAD) was the first instrument to measure the radiation environment during a Mars cruise mission from inside a spacecraft that is similar to potential human exploration spacecraft.

image

The findings indicate radiation exposure for human explorers could exceed our career limit for astronauts if current propulsion systems are used. These measurements are being used to better understand how radiation travels through deep space and how it is affected and changed by the spacecraft structure itself. This, along with research on the International Space Station are helping us develop countermeasures to the impacts of radiation on the human body.

5. A thicker atmosphere and more water in Mars past

image

In 2015, Curiosity discovered evidence that has led scientists to conclude that ancient Mars was once a warmer, wetter place than it is today. 

To produce this more temperate climate, several researchers have suggested that the planet was once shrouded in a much thicker carbon dioxide atmosphere. You may be asking…Where did all the carbon go?

image

The solar wind stripped away much of Mars’ ancient atmosphere and is still removing tons of it every day. That said, 3.8 billion years ago, Mars might have had a moderately dense atmosphere, with a surface pressure equal to or less than that found on Earth.

Our Curiosity rover continues to explore the Red Planet today. On average, the rover travels about 30 meters per hour and is currently on the lower slope of Mount Sharp.

image

Get regular updates on the Curiosity mission by following @MarsCuriosity on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
We’re Studying A New Method Of Water Recycling And Carbon Dioxide Removal That Relies On Specific Geometric

We’re studying a new method of water recycling and carbon dioxide removal that relies on specific geometric shapes and fluid dynamics, rather than complex machinery, in an effort to help build better life support systems for spacecraft. The research could also teach us more about the water processing approaches we take on Earth. Here, NASA astronaut Jack Fischer, is working with the Capillary Structures for Exploration Life Support (Capillary Structures) investigation capillary sorbent hardware that is made up of 3D printed contractors that are supported by tubing, valves and a pump.

Learn more about how this highly interactive investigation works, and what we could learn from the results HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Five Ways the International Space Station’s National Lab Enables Commercial Research

A growing number of commercial partners use the International Space Station National Lab. With that growth, we will see more discoveries in fundamental and applied research that could improve life on the ground.

image

Space Station astronaut Kate Rubins was the first person to sequence DNA in microgravity.

Since 2011, when we engaged the Center for the Advancement of Science in Space (CASIS) to manage the International Space Station (ISS) National Lab, CASIS has partnered with academic researchers, other government organizations, startups and major commercial companies to take advantage of the unique microgravity lab. Today, more than 50 percent of CASIS’ experiments on the station represent commercial research.

Here’s a look at five ways the ISS National Lab is enabling new opportunities for commercial research in space.

1. Supporting Commercial Life Sciences Research

image

One of the main areas of focus for us in the early origins of the space station program was life sciences, and it is still a major priority today. Studying the effects of microgravity on astronauts provides insight into human physiology, and how it evolves or erodes in space. CASIS took this knowledge and began robust outreach to the pharmaceutical community, which could now take advantage of the microgravity environment on the ISS National Lab to develop and enhance therapies for patients on Earth. Companies such as Merck, Eli Lilly & Company, and Novartis have sent several experiments to the station, including investigations aimed at studying diseases such as osteoporosis, and examining ways to enhance drug tablets for increased potency to help patients on Earth. These companies are trailblazers for many other life science companies that are looking at how the ISS National Lab can advance their research efforts.

2. Enabling Commercial Investigations in Material and Physical Sciences

image

Over the past few years, CASIS and the ISS National Lab also have seen a major push toward material and physical sciences research by companies interested in enhancing their products for consumers. Examples range from Proctor and Gamble’s investigation aimed at increasing the longevity of daily household products, to Milliken’s flame-retardant textile investigation to improve protective clothing for individuals in harm’s way, and companies looking to enhance materials for household appliances. Additionally, CASIS has been working with a variety of companies to improve remote sensing capabilities in order to better monitor our oceans, predict harmful algal blooms, and ultimately, to better understand our planet from a vantage point roughly 250 miles above Earth.

3. Supporting Startup Companies Interested in Microgravity Research 

image

CASIS has funded a variety of investigations with small startup companies (in particular through seed funding and grant funding from partnerships and funded solicitations) to leverage the ISS National Lab for both research and test-validation model experiments. CASIS and The Boeing Company recently partnered with MassChallenge, the largest startup accelerator in the world, to fund three startup companies to conduct microgravity research.

4. Enabling Validation of Low-Earth Orbit Business Models 

image

The ISS National Lab helps validate low-Earth orbit business models. Companies such as NanoRacks, Space Tango, Made In Space, Techshot, and Controlled Dynamics either have been funded by CASIS or have sent instruments to the ISS National Lab that the research community can use, and that open new channels for inquiry. This has allowed the companies that operate these facilities to validate their business models, while also building for the future beyond station.

5. Demonstrating the Commercial Value of Space-based Research

We have been a key partner in working with CASIS to demonstrate to American businesses the value of conducting research in space. Through outreach events such as our Destination Station, where representatives from the International Space Station Program Science Office and CASIS select cities with several major companies and meet with the companies to discuss how they could benefit from space-based research. Over the past few years, this outreach has proven to be a terrific example of building awareness on the benefits of microgravity research.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

Innovation At 100

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

image

In 1938 Langley mounted the navy's Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

image

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

image

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

image

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

image

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

image

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

image

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

image

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

image

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

image

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

image

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

image

Artist concept of NASA's Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

image

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

image

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.

Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.

ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!

This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags