Laravel

Spacestation - Blog Posts

8 years ago

What Science is Launching to Space?

image

The tenth SpaceX cargo resupply mission launched to the International Space Station on Feb. 18, and is carrying science ranging from protein crystal growth studies to Earth science payloads. Here’s a rundown of some of the highlights heading to the orbiting laboratory.

image

The CASIS PCG 5 investigation will crystallize a human monoclonal antibody, developed by Merck Research Labs, that is currently undergoing clinical trials for the treatment of immunological disease. Results from this investigation have the potential to improve the way monoclonal antibody treatments are administered on Earth.

image

Without proteins, the human body would be unable to repair, regulate or protect itself. Crystallizing proteins provides better views of their structure, which helps scientists to better understand how they function. Often times, proteins crystallized in microgravity are of higher quality than those crystallized on Earth. LMM Biophysics 1 explores that phenomena by examining the movement of single protein molecules in microgravity. Once scientists understand how these proteins function, they can be used to design new drugs that interact with the protein in specific ways and fight disease.

image

Much like LMM Biophysics 1, LMM Biophysics 3 aims to use crystallography to examine molecules that are too small to be seen under a microscope, in order to best predict what types of drugs will interact best with certain kinds of proteins. LMM Biophysics 3 will look specifically into which types of crystals thrive and benefit from growth in microgravity, where Earth’s gravity won’t interfere with their formation. Currently, the success rate is poor for crystals grown even in the best of laboratories. High quality, space-grown crystals could improve research for a wide range of diseases, as well as microgravity-related problems such as radiation damage, bone loss and muscle atrophy.

image
image

Nanobiosym Predictive Pathogen Mutation Study (Nanobiosym Genes) will analyze two strains of bacterial mutations aboard the station, providing data that may be helpful in refining models of drug resistance and support the development of better medicines to counteract the resistant strains.

image

During the Microgravity Expanded Stem Cells investigation, crew members will observe cell growth and morphological characteristics in microgravity and analyze gene expression profiles of cells grown on the station. This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.

image

The Lightning Imaging Sensor will measure the amount, rate and energy of lightning as it strikes around the world. Understanding the processes that cause lightning and the connections between lightning and subsequent severe weather events is a key to improving weather predictions and saving life and property. 

image

From the vantage of the station, the LIS instrument will sample lightning over a wider geographical area than any previous sensor.

image

Future robotic spacecraft will need advanced autopilot systems to help them safely navigate and rendezvous with other objects, as they will be operating thousands of miles from Earth. 

image

The Raven (STP-H5 Raven) studies a real-time spacecraft navigation system that provides the eyes and intelligence to see a target and steer toward it safely. Research from Raven can be applied toward unmanned vehicles both on Earth and in space, including potential use for systems in NASA’s future human deep space exploration.

image

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of Earth’s atmosphere.

image

These measurements will allow national and international leaders to make informed policy decisions regarding the protection and preservation of Earth’s ozone layer. Ozone in the atmosphere protects Earth’s inhabitants, including humans, plants and animals, from harmful radiation from the sun, which can cause long-term problems such as cataracts, cancer and reduced crop yield.

image

Tissue Regeneration-Bone Defect (Rodent Research-4) a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studies what prevents other vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions impact the process. 

image

Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30% of the patient.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Can You Guess Which Football Signals Robonaut Is Doing?

Meet Robonaut, our humanoid robot (which means it’s built to look like a person). This makes it easier for Robonaut to do the same jobs as a person. 

image

Robonaut could help with anything from working on the International Space Station to exploring other worlds…and now he might even take up a job as a referee!

We had Robonaut act out a few football signals. Can you guess what they are?!

Signal #1

image

Signal #2

image

Signal #3

image

Signal #4

image

Signal #5

image

Signal #6

image

Signal #7

image

Signal #8

image

Signal #9

image

Get the answers:

image

But it’s not all fun and games for Robonaut...from performing movements like a referee to helping astronauts on the space station, it’s important to have a robot that can perform the same tasks as humans. Why?  

Can You Guess Which Football Signals Robonaut Is Doing?

Robonaut could someday be tested outside the space station. This testing would determine how well Robonaut could work with, or instead of, spacewalking astronauts. Designers even have ideas for sending a robot like Robonaut to another world someday. If testing goes well, who knows where Robonaut - or a better robot based on Robonaut - could end up?

Can You Guess Which Football Signals Robonaut Is Doing?

To learn more about connections between space and football, visit: https://www.nasa.gov/football   

To learn more about Robonaut, visit: https://www.nasa.gov/robonaut2 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

A Journey of Eight Years

We’re taking time to highlight our progress and accomplishments over the past 8 years. Join our historical journey!

Obama Visit to NASA in 2010 

image

President Barack Obama visited our Kennedy Space Center in Florida to deliver remarks on the bold new course the administration is charting for America’s space program. During a speech at the center, President Obama said, “I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow. And I expect to be around to see it.” R  

Commercial Crew

image

Our Commercial Crew and Cargo Program is investing financial and technical resources to stimulate efforts within the private sector to develop safe, reliable and cost-effective space transportation systems. This program has allowed us to continue to reach low-Earth orbit, even after the retirement of the Space Shuttle Program. In the coming years, we will once again launch U.S. astronauts from American soil to the International Space Station through this commercial partnership.  

Revamping KSC: Vehicle Assembly Building

image

Our Vehicle Assembly Building (VAB) at Kennedy Space Center served through the Apollo and Space Shuttle Programs, and is now undergoing renovations to accommodate future launch vehicles…like our Space Launch System (SLS) rocket that will carry astronauts to deep space destinations, like Mars. Already, shuttle-era work platforms have been removed from the VAB to make way for our advanced heavy-lift launch vehicle, SLS.  

Revamping KSC: Pad 39B

image

For the first time since our Apollo-era rockets and space shuttles lifted off on missions from Launch Complex 39 at our Kennedy Space Center in Florida, one of the launch pads is undergoing extensive upgrades to support our 21st century space launch complex. At launch pad B, workers are making upgrades to support our Space Launch System (SLS) rocket and a variety of other commercial launch vehicles. .

Commercial Resupply Program

image

Our commercial partnerships with companies like SpaceX and Orbital ATK are allowing us to find new ways to resupply the International Space Station. Orbital ATK’s Cygnus cargo spacecraft is shown being captured using the Station’s Canadarm2 robotic arm. Packed with more than 5,100 pounds of cargo and research equipment, the vehicle made Orbital ATK's fifth commercial resupply flight to the station in October 2016.  

Pluto Flyby

image

After a seven-year journey, our New Horizons spacecraft arrived at dwarf planet Pluto. It captured this high-resolution enhanced color view of the planet on July 14, 2015. The image combines blue, red and infrared images taken by the craft’s imaging camera. Pluto’s surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many land forms have their own distinct colors, which tell a complex geological and climatological story.   

Juno at Jupiter

image

Juno’s 2011 launch brought it into orbit around Jupiter. This composite image depicts Jupiter’s cloud formations as seen through the eyes of Juno’s Microwave Radiometer (MWR) instrument as compared to the top layer, a Cassini Imaging Science Subsystem image of the planet. The MWR can see several hundred miles (kilometers) into Jupiter’s atmosphere with its largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below.  

Orion EFT-1

image

As we strived to make deep-space missions a reality, on Dec. 5, 2014, a Delta IV Heavy rocket lifted off from Cape Canaveral carrying our Orion spacecraft on an unpiloted flight test to Earth orbit. During the two-orbit, four-and-a-half hour mission, engineers evaluated the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.  

 Building of SLS

image

Meet the Space Launch System, our latest rocket system and see how it stacks up (no pun intended) to earlier generations of launch vehicles. While we engaged commercial partners to help us reach low-Earth orbit, we also were able to focus on deep-space exploration. This resulted in the creation of SLS, the world’s most powerful rocket and the one that will carry humans to deep-space destinations, like Mars.  

Small Satellite Technology

image

Our latest generation of small satellite technology represents a new way of advancing scientific research and reducing costs. These small sats are part of a technology demonstration that were deployed from the International Space Station in December 2016.   

Technology Development Organization

A Journey Of Eight Years

In 2013, we created a standalone technology development organization at NASA. Why? This new organization was an outgrowth of President Obama’s recognition of the critical role that space technology and innovation will play in enabling both future space missions and bettering life on Earth. The President’s most recent budget request included $4 million per year for our Centennial Challenges prizes. This program seeks innovations from diverse and non-traditional sources and competitors are not supported by government funding. Awards are only made to successful teams when the challenges are met. Throughout this administration (2009 – 2016), more than $6.5 million has been awarded to winners. 

Spinoffs

image

Did you know that many technologies originally designed for space exploration are now being used by the general public? Yes, there’s space in your life! We have a long history of transferring technology to the private sector, things we like to call NASA Spinoffs. From enriched baby formula, to digital camera sensors…you may be surprised where this technology came from. 

 Space Station Extended to 2024

image

In 2014, the Obama Administration announced that the United States would support the extension of the International Space Station to at least 2024. This gave the station a decade to continue its already fruitful microgravity research mission. This offered scientists and engineers the time they need to ensure the future of exploration, scientific discoveries and economic development.  

Year in Space Mission

image

Former NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko spent a year in space to help us understand the impacts of long-duration spaceflight on the human body. The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts that will one day travel to Mars. Scott Kelly was a particularly interesting candidate for the job, as he has a twin brother. While Scott spent a year on the International Space Station, his brother Mark spent the year on Earth. Comparing test results from both subjects will provide an even deeper understanding of the human body and how it reacts to the space environment.  

EPIC Earth Images

image

From one MILLION miles away, our EPIC camera on the Deep Space Climate Observatory (DSCOVR) satellite returned its first view of the entire sunlit side of Earth in 2015. Because of this spacecraft, you can now see a daily series of images of our home planet! These images are available 12 to 36 hours after they are acquired. 

James Webb Space Telescope

image

The James Webb Space Telescope represents a giant leap forward in our quest to understand the universe and our origins.  The successor to the Hubble Space Telescope, JWST is designed to examine every phase of cosmic history: from the first luminous glows after the Big Bang to the formation of galaxies, stars, and planets to the evolution of our own solar system. More: 

Green Aviation

image

Our commitment to advancing aeronautics has led to developments in today’s aviation that have made air travel safer than ever. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Streamlined aircraft bodies, quieter jet engines, techniques for preventing icing, drag-reducing winglets, lightweight composite structures, software tools to improve the flow of tens of thousands of aircraft through the sky, and so much more are an everyday part of flying thanks to our research that traces its origins back to the earliest days of aviation. Our green aviation technologies are dramatically reducing the environmental impact of aviation and improving its efficiency while maintaining safety in more crowded skies, and paving the way for revolutionary aircraft shapes and propulsion. 

X-Planes

image

History is about to repeat itself as the Quiet Supersonic Technology, or QueSST, concept  begins its design phase to become one of the newest generation of X-planes. Over the past seven decades, our nation’s best minds in aviation designed, built and flew a series of experimental airplanes to test the latest fanciful and practical ideas related to flight. Known as X-planes, we are again are preparing to put in the sky an array of new experimental aircraft, each intended to carry on the legacy of demonstrating advanced technologies that will push back the frontiers of aviation.  

Drones

image

Blazing the trail for safely integrating drones into the national airspace, we have been testing and researching uncrewed aircraft. The most recent “out of sight” tests are helping us solve the challenge of drones flying beyond the visual line of sight of their human operators without endangering other aircraft. 

Solar Dynamics Observatory

image

Our Solar Dynamics Observatory, which launched in 2010, observes the sun in unparalleled detail and is yet another mission designed to understand the space in which we live. In this image, the sun, our system’s only star seems to be sending us a message. A pair of giant filaments on the face of the sun form what appears to be an enormous arrow pointing to the right. If straightened out, each filament would be about as long as the sun’s diameter—1 million miles long. Such filaments are cooler clouds of solar material suspended above the sun's surface by powerful magnetic forces. Filaments can float for days without much change, though they can also erupt, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME.  

Curiosity Launch and Landing

image

There are selfies and there are selfies—from a world more than 33 million miles away. When the Curiosity Rover launched on Nov. 6, 2011, to begin a 10-month journey to the Red Planet, who knew it would be so photogenic. Not only has Curiosity sent back beauty shots of itself, its imagery has increased our knowledge of Mars manyfold. But it’s not just a camera; onboard are an array of scientific instruments designed to analyze the Red Planet’s soil, rocks and chemical composition. 

Astronaut Applications

image

On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18 with a record turnout! We received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpassed the more than 6,100 received in 2012, and the previous record of 8,000 applicants in 1978.  

OSIRIS-REx

image

Asteroids are a part of our solar system and in our quest to learn more about their origins, we sent the OSIRIS-Rex, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, to rendezvous with comet Bennu and return a sample of the comet to scientists here on Earth. Along the way, the mission will be multitasking during its two-year outbound cruise to search for elusive “Trojan” asteroids. Trojans are asteroids that are constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. 

 Habitable Zone Planets

image

In December 1995, the first exoplanet (a planet outside our solar system) was found. Since then, our Kepler mission has surveyed the Milky Way to verify 2,000+ exoplanets. On July 23, 2015, the Kepler mission confirmed the discovery of the first Earth-sized planet in the habitable zone. Not only that, but the planet orbits a sun very much like our own. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Back-to-Back Friday Spacewalks

On Friday, Jan. 6 and Friday, Jan. 13, astronauts on the International Space Station will step outside to perform spacewalks. 

image

What’s a spacewalk? It’s any time an astronaut gets out of a vehicle or spacecraft while in space. It can also be called an EVA (extravehicular activity).

Astronauts go on spacewalks for many reasons. These activities allow crew members to work outside their spacecraft (in this case the space station).

image

So what specific tasks will astronauts perform in these two upcoming spacewalks? Let’s take a look…

Both spacewalks are being performed to upgrade the orbital outpost’s power system. 

image

The crew members will install adapter plates and hook up electrical connections for six new lithium-ion batteries that were delivered to the station in December.

image

NASA astronauts Shane Kimbrough and Peggy Whitson will perform the first spacewalk on Jan. 6. The work will continue Jan. 13 during the second spacewalk, which will be conducted by Kimbrough and ESA astronaut Thomas Pesquet.

image

Prior to each spacewalk, the new batteries will be robotically extracted from a pallet to replace 12 older nickel-hydrogen batteries through a series of robotic operations.  

Watch LIVE Spacewalk Coverage

Friday, Jan. 6 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Friday, Jan. 13 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Watch for more...

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

2016: This Year at NASA!

As 2016 comes to a close and prospects of the new year loom before us, we take a moment to look back at what we’ve accomplished and how it will set us ahead in the year to come.

image

2016 marked record-breaking progress in our exploration activities. We advanced the capabilities needed to travel farther into the solar system while increasing observations of our home and the universe, learning more about how to continuously live and work in space and, or course, inspiring the next generation of leaders to take up our journey to Mars and make their own discoveries.

Here are a few of the top NASA stories of 2016...

International Space Station

One Year Mission…completed!

image

NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko returned to Earth after spending a year in space. Testing the limits of human research, findings from their One Year Mission will help send humans farther into space than ever before.

Commercial Resupply

image

Commercial partners Orbital ATK and SpaceX delivered tons (yes literally tons) of cargo to the International Space Station. This cargo supported hundreds of science experiments and technology demonstrations crucial to our journey to Mars.

Mars

Expandable Habitats

image

The Bigelow Expandable Activity Module (BEAM) was one of the technology demonstrations delivered to the space station in April. Expandable habitats greatly decrease the amount of transport volume for future space missions.

Booster Test Firing

image

In June, a booster for our Space Launch System (SLS) rocket successfully fired up. It will be used on the first un-crewed test flight of SLS with the Orion spacecraft in 2018. Eventually, this rocket and capsule will carry humans into deep space and one day…Mars!

InSight

image

This year we updated the milestones for our InSight mission with a new target launch window beginning in May 2018. This mission will place a fixed science outpost on Mars to study its deep interior. Findings and research from this project will address one of the most fundamental questions we have about the planetary and solar system science…how in the world did these rocky planets form?

Solar System and Beyond

Juno

image

On July 4, our Juno spacecraft arrived at Jupiter. This mission is working to improve our understanding of the solar system’s beginnings by revealing the origin and evolution of Jupiter.

OSIRIS-REx

image

In September, we launched our OSIRIS-REx spacecraft…which is America’s first-ever asteroid sample return mission. This spacecraft will travel to a near-Earth asteroid, called Bennu, where it will collect a sample to bring back to Earth for study.

James Webb Space Telescope

image

In February, the final primary mirror segment of our James Webb Space Telescope was installed. This will be the world’s most powerful space telescope ever, and is scheduled to launch in 2018. Webb will look back in time, studying the very first galaxies ever formed.

Kepler

image

In May, our Kepler mission verified the discovery of 1,284 new planets. Kepler is the first NASA mission to find potentially habitably Earth-sized planets.

Earth Right Now

Earth Expeditions

image

Our efforts to improve life on Earth included an announcement in March of a collection of Earth Science field campaigns to study how our planet is changing. These Earth Expeditions sent scientists to places like the edge of the Greenland ice sheet to the coral reefs of the South Pacific to delve into challenging questions about how our planet is changing…and what impacts humans are having on it.

Small Satellites

image

In November, we announced plans to launch six next-generation Earth-observing small satellite missions. One uses GPS signals to measure wind in hurricanes and tropical systems in greater detail than ever before.

Aeronautics Research

Our efforts in 2016 to make air travel cleaner, safer and quieter included new technology to improve safety and efficiency of aircraft arrivals, departures and service operations.

X-Plane

image

In June, we highlighted our first designation of an experimental airplane, or X-plane, in a decade. It will test new electric propulsion technology.

Drone Technolgy

image

In October, we evaluated a system being developed for the Federal Aviation Administration to safely manage drone air traffic.

Technology

Electric Propulsion

image

We selected Aerojet Rocketdyne to develop and advanced electric propulsion system to enable deep space travel to an asteroid and Mars.

Spinoffs

image

Our technology transfer program continued to share the agency’s technology with industry, academia and other government agencies at an unprecedented rate.

Centennial Challenges

image

Our Centennial Challenges program conducted four competition events in 2016 to spark innovation and enable solutions in important technology focus areas.

Watch the full video recap of ‘This Year @NASA’ here:

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Thanksgiving...in Space

Since 2000, humans have continuously lived and worked on the International Space Station. That means plenty of crew members have celebrated holidays off the Earth.

image

Although they’re observing the same holidays, they do so in a slightly different way because of the unique environment 250 miles above the Earth.

Consider the differences of living on Earth and in space…

image

Food scientists must develop foods that will be easier to handle and consume in an environment without gravity. The food must not require refrigeration and also provide the nutrition humans need to remain healthy.

image

Freeze drying food allows it to remain stable at room temperature, while also significantly reducing its weight.

image

Did you know that all the food sent to the space station is precooked? Sending precooked food means that it requires no refrigeration and is either ready to eat or can be prepared by simply adding water or by heating. 

image

The only exception are the fruit and vegetables stowed in the fresh food locker. The food comes in either freeze-dried containers or thermostabilized pouches. If freeze-dried in a vacuum sealed package, the astronauts have a rehydration system in-flight, which they use restore moisture in their food.  If thermostabilized, the packaging is designed to preserve the food similar to canned products, but instead in a flexible, multi-layered pouch.

So what will the space station crew eat this year (2016) for Thanksgiving?

Turkey

Cherry/Blueberry Cobbler

Candied Yams

Rehydratable Cornbread Dressing

Rehydratable Green Beans and Mushrooms

Rehydratable Mashed Potatoes

What are you bringing to Thanksgiving on Earth this year? Treat your family and friends astronaut-style with this cornbread dressing recipe straight out of our Space Food Systems Laboratory…no freeze drying required!

image

For spaceflight preparation:

Baked dressing is transferred to metal tray and freeze-dried accordingly. One serving of cornbread dressing shall weigh approximately 145 g prior to freeze-drying and 50 g after freeze-drying.

Learn more about our Food Systems Laboratory in this Facebook Live video: https://www.facebook.com/ISS/videos/1359709837395277/

Happy Thanksgiving!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Learn about supermoons, read the monthly blog from the Dawn mission’s chief engineer and more.

image

1. This Is the Season for Supermoons 

The second of three fall supermoons occurred on November 14 and the final one is December. What are supermoons? Since the moon’s orbit is elliptical, one side (perigee) is about 30,000 miles closer to Earth than the other (apogee). The word syzygy, in addition to being useful in word games, is the scientific name for when the Earth, sun, and moon line up as the moon orbits Earth. When perigee-syzygy of the Earth-moon-sun system occurs and the moon is on the opposite side of the Earth from the sun, we get a perigee moon or more commonly, a supermoon!

+ Learn more 

image

2. Dawn Mission Blog

When Dawn arrived at Ceres in March 2015, it became the first spacecraft to reach a dwarf planet  Meet the Dawn mission’s chief engineer Dr. Marc Rayman and read his insightful blogs about the mission. 

+ Latest Blog

+  All Mission Managers Blogs

image

3. The Seas of Titan

On its penultimate close flyby of Saturn’s largest moon Titan, Cassini will use its radio science instrument to scan the great seas of methane near the moon’s North Pole. Titan’s three large northern seas, Punga Mare, Ligeia Mare and Kraken Mare, are each hundreds of miles across, but imaging cameras can’t see them very well because the moon’s surface is veiled by a thick haze. Radio signals, however, can penetrate the moon’s atmosphere, and Cassini has an instrument that uses radio signals to reveal Titan's dramatic landscapes.

+ See a map of Titan’s methane seas

image

4.  Spot the Station!

Have you ever seen the International Space Station fly over your town? Do you want to? 

+ Here's how and where and when to look

image

5. The Science of Light, Celebrating Dark Skies in Our National Parks

Learning more about the science of light and human vision will help us understand the value and fragility of natural lightscapes. During the day, the surface of the planet is bathed in light from the sun. The energy in sunlight drives weather, the water cycle, and ecosystems. But at night, in the absence of bright light, our atmosphere turns transparent and allows us to see beyond our planet into the vastness of the cosmos.

+ More

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Home Is Where The Astronaut Is…

Home is Where the Astronaut Is…

The International Space Station serves as a home, office and recreation room for astronauts. They share this confined space far above the Earth with crew members from different countries and cultures for as long as six months or more. At the same time, maintaining individual well-being and crew harmony is important for the crew and mission success.

The Culture, Values and Environmental Adaptation in Space (At Home in Space) Investigation, looks at changes in perceptions about home in space and the ways a unique culture may develop aboard the station during a mission. Discover more about this study HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Vote While You float: An Astronaut Voting Story

With the excitement of getting to the polls on Election Day many people will have a hard time keeping their feet on the ground, but astronauts who vote literally have to strap themselves down so they don’t float away.

Astronauts orbit the Earth at 17,000 miles per hour, but thanks to a bill passed by Texas legislatures in 1997 that put in place technical voting procedure for astronauts – nearly all of whom live in Texas – they also have the ability to vote from space!

image

Image Kjell Lindgren released on social media of the US flag floating in the Cupola module (11/12/2015) 

For astronauts, the voting process starts a year before launch, when astronauts are able to select which elections (local/state/federal) that they want to participate in while in space. Then, six months before the election, astronauts are provided with a standard form: the “Voter Registration and Absentee Ballot Request – Federal Post Card Application.”

 ‘Space voting’ was first used the same year it was implemented in 1997. NASA astronaut David Wolf became the first American to vote in space while on the Russian Mir Space Station. 

image

STS-86 crewmember David Wolf, the first American to vote in space, relaxes in the Spacehab module while Space Shuttle Atlantis was docked to Mir (10/16/1997) 

While astronauts don’t have to wait in line for his ballot like the rest of us, there is one disadvantage to voting in space: they miss out on the highly coveted “I Voted” sticker.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Kate Rubins’ Space Station Science Scrapbook

As a child, Kate Rubins dreamed of being an astronaut and a scientist. During the past four months aboard the International Space Station, that dream came full circle. She became the first person to sequence DNA in space, among other research during her recent mission, adding to her already impressive experience. She holds a doctorate in molecular biology, and previously led a lab of 14 researchers studying viruses, including Ebola.

image

Here’s a look back at Rubins in her element, conducting research aboard your orbiting laboratory.

Kate inside Destiny, the U.S. Laboratory Module

The U.S. national laboratory, called Destiny, is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety, and quality of life for people all over the world. 

image

Destiny houses the Microgravity Science Glovebox (MSG), in which Kate worked on the Heart Cells experiment.

Swabbing for Surface Samples

Microbes that can cause illness could present problems for current and future long duration space missions. 

image

Understanding what microbe communities thrive in space habitats could help researchers design antimicrobial technology. Here, Kate is sampling various surfaces of the Kibo module for the Microbe-IV investigation.

Culturing Beating Heart Cells in Space

The Heart Cells investigation uses human skin cells that are induced to become stem cells, which can then differentiate into any type of cell. 

image

Researchers forced the stem cells to grow into human heart cells, which Rubins cultured aboard the space station for one month.

image

Rubins described seeing the heart cells beat for the first time as “pretty amazing. First of all, there’s a few things that have made me gasp out loud up on board the [space] station. Seeing the planet was one of them, but I gotta say, getting these cells in focus and watching heart cells actually beat has been another pretty big one.”

Innovative Applied Research Experiment from Eli Lilly

The Hard to Wet Surfaces investigation from Eli Lilly, and sponsored by the Center for the Advancement of Science in Space (CASIS), looks at liquid-solid interactions and how certain pharmaceuticals dissolve, which may lead to more potent and effective medicines in space and on Earth. 

image

Rubins set up vials into which she injected buffer solutions and then set up photography to track how tablets dissolved in the solution in microgravity.

Capturing Dragon

Rubins assisted in the capture of the SpaceX Dragon cargo spacecraft in July. The ninth SpaceX resupply mission delivered more than two thousand pounds of science to the space station. 

image

Biological samples and additional research were returned on the Dragon spacecraft more than a month later.  

Sliding Science Outside the Station

Science doesn’t just happen inside the space station. External Earth and space science hardware platforms are located at various places along the outside of the orbiting laboratory. 

image

The Japanese Experiment Module airlock can be used to access the JEM Exposed Facility. Rubins installed the JEM ORU Transfer Interface (JOTI) on the JEM airlock sliding table used to install investigations on the exterior of the orbiting laboratory.

Installing Optical Diagnostic Instrument in the MSG

Rubins installed an optical diagnostic instrument in the Microgravity Science Glovebox (MSG) as part of the Selective Optical Diagnostics Instrument (SODI-DCMIX) investigation. Molecules in fluids and gases constantly move and collide. 

image

When temperature differences cause that movement, called the Soret effect, scientists can track it by measuring changes in the temperature and movement of mass in the absence of gravity. Because the Soret effect occurs in underground oil reservoirs, the results of this investigation could help us better understand such reservoirs.

The Sequencing of DNA in Space

When Rubins’ expedition began, DNA had never been sequenced in space. Within just a few weeks, she and the Biomolecule Sequencer team had sequenced their one billionth “base” – the unit of DNA - aboard the orbiting laboratory. 

image

The Biomolecule Sequencer investigation seeks to demonstrate that DNA sequencing in microgravity is possible, and adds to the suite of genomics capabilities aboard the space station.

Studying Fluidic Dynamics with SPHERES

The SPHERES-Slosh investigation examines the way liquids move inside containers in a microgravity environment. The phenomena and mechanics associated with such liquid movement are still not well understood and are very different than our common experiences with a cup of coffee on Earth.

image

Rockets deliver satellites to space using liquid fuels as a power source, and this investigation plans to improve our understanding of how propellants within rockets behave in order to increase the safety and efficiency of future vehicle designs. Rubins conducted a series of SPHERES-Slosh runs during her mission.

Retrieving Science Samples for Their Return to Earth

Precious science samples like blood, urine and saliva are collected from crew members throughout their missions aboard the orbiting laboratory. 

image

They are stored in the Minus Eighty-Degree Laboratory Freezer for ISS (MELFI) until they are ready to return to Earth aboard a Soyuz or SpaceX Dragon vehicle.

Measuring Gene Expression of Biological Specimens in Space

Our WetLab-2 hardware system is bringing to the space station the technology to measure gene expression of biological specimens in space, and to transmit the results to researchers on Earth at the speed of light. 

image

Rubins ran several WetLab-2 RNA SmartCycler sessions during her mission.

Studying the First Expandable Habitat Module on the Space Station

The Bigelow Expandable Activity Module (BEAM) is the first expandable habitat to be installed on the space station. It was expanded on May 28, 2016. 

image

Expandable habitats are designed to take up less room on a spacecraft, but provide greater volume for living and working in space once expanded. Rubins conducted several evaluations inside BEAM, including air and surface sampling.

Better Breathing in Space and Back on Earth

Airway Monitoring, an investigation from ESA (the European Space Agency), uses the U.S. airlock as a hypobaric facility for performing science. Utilizing the U.S. airlock allows unique opportunities for the study of gravity, ambient pressure interactions, and their effect on the human body. 

image

This investigation studies the occurrence and indicators of airway inflammation in crew members, using ultra-sensitive gas analyzers to evaluate exhaled air. This could not only help in spaceflight diagnostics, but that also hold applications on earth within diagnostics of similar conditions, for example monitoring of asthma.

Hot Science with Cool Flames

Fire behaves differently in space, where buoyant forces are removed. Studying combustion in microgravity can increase scientists’ fundamental understanding of the process, which could lead to improvement of fire detection and suppression systems in space and on Earth. 

image

Many combustion experiments are performed in the Combustion Integration Rack (CIR) aboard the space station. Rubins replaced two Multi-user Droplet Combustion Apparatus (MDCA) Igniter Tips as part of the CIR igniter replacement operations.

Though Rubins is back on Earth, science aboard the space station continues, and innovative investigations that seek to benefit humans on Earth and further our exploration of the solar system are ongoing. Follow @ISS_Research to keep up with the science happening aboard your orbiting laboratory.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Studying Circadian Rhythms and Sleep in Space

Do you remember the last time you stayed awake all night? Maybe you had a major exam, or flew across the ocean. How did you feel the following day? The time at which you would normally feel sleepy was probably different from usual. Your eyes “told” you that it was day, time for work or school. Your brain or muscles disagreed. They “told” you that it was middle of the night, and that you should sleep.

Studying Circadian Rhythms And Sleep In Space

Changing when you sleep, or being in areas where daytime and nighttime are “off-schedule”, affects your circadian rhythm. The circadian rhythm exists in humans as a roughly 24-hour clock that prompts us to sleep or wake.

Studying Circadian Rhythms And Sleep In Space

The European Space Agency’s experiment, Circadian Rhythms, investigates the role of this “biological clock” and its changes during spaceflight. Researchers hypothesize that a non-24-hour cycle of light and dark affects crew members’ circadian rhythms. Understanding the effects of life in space on astronauts’ circadian rhythms may help improve performance and health for future crew members.

Researchers collect data on astronaut’s circadian rhythms by using a “double-sensor,” which measures the temperature at the core of the body. The crew attaches one sensor to their head, and the other to their chest.

Studying Circadian Rhythms And Sleep In Space

Based on results from this research, future crew members could more accurately adjust their sleep, work and physical activity scheduled to accommodate natural circadian cycles, which could improve productivity and health.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

5 Things You Didn’t Know About Astronaut Shane Kimbrough!

After years of training NASA astronaut Shane Kimbrough is launching to the International Space Station on Wednesday, so there’s not much left to say, right?  Wrong!  Here are five secrets about his past that the Texas native and retired Army officer hasn’t told us, until now.

1. Shane went to elementary school in Germany

image

But his family returned to the U.S. where he attended middle and high school.

2. Life is Smyrna, Georgia 

image

Shane attended middle and high school in the Atlanta suburb of Smyrna with movie star Julia Roberts!

3. Shane had an accomplished military career

image

A retired Army colonel, Shane graduated from West Point, after which he became an Army aviator. He later became a jumpmaster and has had a long and distinguished military career.

Read his bio.

4. He loves sports. All sports!

image

He LOVES playing, coaching and watching sports. Watching college football is one of the things he’ll miss while he’s on the station.

5. Leading the future

image

His passion for teaching is one that he finds “most rewarding.”

Follow Shane on the station at @astro_kimbrough.

Learn more about missions to the International Space Station HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Watch a Launch From Your Own Backyard

On Monday, Oct. 17, we’re launching cargo to the International Space Station, and if you live on the east coast, there’s a chance you can catch a glimpse! 

image

The above map shows the areas on the east coast where launch may be visible, depending on cloud conditions.

Liftoff is currently scheduled for 7:40 p.m. EDT from our Wallops Flight Facility in Virginia. 

The launch of Orbital ATK’s Cygnus spacecraft will carry around 5,100 pounds of supplies and research materials to the crew on the space station. 

Not in the launch viewing area? No worries! Full launch coverage will be available starting at 6:45 p.m. EDT HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What Cargo is Launching in October to the International Space Station?

On Monday, Oct. 17, Orbital ATK is scheduled to send new science experiments to the International Space Station. 

image

The Cygnus spacecraft will blast off from our Wallops Flight Facility in Virginia at 7:40 p.m. EDT carrying more than 5,100 pounds of science, supplies and equipment.

Let’s take a look at a few of these experiments:

Cool Flames

Low-temperature fires with no visible flames are known as cool flames. The Cool flames experiment examines these low-temperature combustion of droplets of a variety of fuels and additives in low gravity.

image

Why are we studying this? Data from this experiment could help scientists develop more efficient advanced engines and new fuels for use in space and on Earth.

Lighting Effects

Light plays a powerful role in our daily, or circadian, rhythms. Astronauts aboard the space station experience multiple cycles of light and dark every 24 hours, which, along with night shifts and the stresses of spaceflight, can affect their sleep quantity and quality.

image

The Lighting Effects investigation tests a new lighting system aboard the station designed to enhance crew health and keep their body clocks in proper sync with a more regular working and resting schedule.

Why are we studying this? Lighting manipulation has potential as a safe, non-pharmacological way to optimize sleep and circadian regulation on space missions. People on Earth, especially those who work night shifts, could also improve alertness and sleep by adjusting lighting for intensity and wavelength.

EveryWear

A user-friendly tablet app provides astronauts with a new and faster way to collect a wide variety of personal data. The EveryWear experiment tests use of this French-designed technology to record and transmit data on nutrition, sleep, exercise and medications. Astronauts use the app to complete questionnaires and keep medical and clinical logs. They wear a Smartshirt during exercise that records heart activity and body positions and transmits these data to the app. Finally, rather than manually recording everything that they eat, crew members scan barcodes on food packets to collect real-time nutritional data.

image

Why are we studying this? EveryWear has the potential for use in science experiments, biomedical support and technology demonstrations.

Fast Neturon Spectrometer

Outside the Earth’s magnetic field, astronauts are exposed to space radiation that can reduce immune response, increase cancer risk and interfere with electronics.

image

The Fast Neutron Spectrometer (FNS) experiment will help scientists understand high-energy neutrons, part of the radiation exposure experienced by crews during spaceflight, by studying a new technique to measure electrically neutral neutron particles.

Why are we studying this? This improved measurement will help protect crews on future exploration missions, like our journey to Mars.

Watch Launch

Ahead of launch, there will be various opportunities to learn more about the mission:

image

What’s on Board Science Briefing Saturday, Oct. 15 at 4 p.m. EDT Scientists and researchers will discuss some of the experiments being delivered to the station. Watch HERE.

Prelaunch News Briefing Saturday, Oct. 15 at 6 p.m. EDT Mission managers will provide an overview and status of launch operations. Watch HERE.

LAUNCH!!! Monday, Oct. 17 coverage begins at 6:45 p.m. EDT Watch live coverage and liftoff! Launch is scheduled for 7:40 p.m. EDT. Watch HERE.

Facebook Live Starting at 7:25 p.m. EDT you can stream live coverage of the launch on NASA’s Facebook page. Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

It’s Friday...Come Space Out with Us

It’s Friday…which seems like a great excuse to take a look at some awesome images from space.

First, let’s start with our home planet: Earth.

It’s Friday...Come Space Out With Us

This view of the entire sunlit side of Earth was taken from one million miles away…yes, one MILLION! Our EPIC camera on the Deep Space Climate Observatory captured this image in July 2015 and the picture was generated by combining three separate images to create a photographic-quality image.

Next, let’s venture out 4,000 light-years from Earth.

It’s Friday...Come Space Out With Us

This image, taken by the Hubble Space Telescope, is not only stunning…but shows the colorful “last hurrah” of a star like our sun. This star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star’s remaining core. Our sun will eventually burn out and shroud itself with stellar debris…but not for another 5 billion years.

The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen.

Want to see some rocks on Mars?

It’s Friday...Come Space Out With Us

Here’s an image of the layered geologic past of Mars revealed in stunning detail. This color image was returned by our Curiosity Mars rover, which is currently “roving” around the Red Planet, exploring the “Murray Buttes” region.

In this region, Curiosity is investigating how and when the habitable ancient conditions known from the mission’s earlier findings evolved into conditions drier and less favorable for life.

Did you know there are people currently living and working in space?

It’s Friday...Come Space Out With Us

Right now, three people from three different countries are living and working 250 miles above Earth on the International Space Station. While there, they are performing important experiments that will help us back here on Earth, and with future exploration to deep space.

This image, taken by NASA astronaut Kate Rubins shows the stunning moonrise over Earth from the perspective of the space station.

Lastly, let’s venture over to someplace REALLY hot…our sun.

It’s Friday...Come Space Out With Us

The sun is the center of our solar system, and makes up 99.8% of the mass of the entire solar system…so it’s pretty huge. Since the sun is a star, it does not have a solid surface, but is a ball of gas held together by its own gravity. The temperature at the sun’s core is about 27 million degrees Fahrenheit (15 million degrees Celsius)…so HOT!

This awesome visualization appears to show the sun spinning, as if stuck on a pinwheel. It is actually the spacecraft, SDO, that did the spinning though. Engineers instructed our Solar Dynamics Observatory (SDO) to roll 360 degrees on one axis, during this seven-hour maneuver, the spacecraft took an image every 12 seconds.

This maneuver happens twice a year to help SDO’s imager instrument to take precise measurements of the solar limb (the outer edge of the sun as seen by SDO).

Thanks for spacing out with us...you may now resume your Friday. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Why Sequencing DNA in Space is a Big Deal

... And How You Can Talk to the Scientists Who Made It Happen

image

Less than one month ago, DNA had never been sequenced in space. As of today, more than one billion base pairs of DNA have been sequenced aboard the International Space Station, Earth’s only orbiting laboratory. The ability to sequence the DNA of living organisms in space opens a whole new world of scientific and medical possibilities. Scientists consider it a game changer. 

image

NASA astronaut Kate Rubins, who has a background in genomics, conducted the sequencing on the space station as part of the Biomolecule Sequencer investigation. A small, commercial, off-the-shelf device called MinION (min-EYE-ON), manufactured by Oxford Nanopore Technologies in the UK, was used to sequence the DNA of bacteria, a virus and rodents. Human DNA was not sequenced, and there are no immediate plans to sequence human DNA in space. 

image

(Image Credit: Oxford Nanopore Technologies)

The MinION is about the size of a candy bar, and plugs into a laptop or tablet via USB connection, which also provides power to the device. The tiny, plug and play sequencer is diminutive compared to the large microwave-sized sequencers used on Earth, and uses much less power. Unlike other terrestrial instruments whose sequencing run times can take days, this device’s data is available in near real time; analysis can begin within 10-15 minutes from the application of the sample.

image

Having real-time analysis capabilities aboard the space station could allow crews to identify microbes, diagnose infectious disease and collect genomic and genetic data concerning crew health, without having to wait long periods of time to return samples to Earth and await ground-based analysis.

The first DNA sequencing was conducted on Aug. 26, and on Sept. 14, Rubins and the team of scientists back at NASA’s Johnson Space Center in Houston hit the one-billionth-base-pairs-of-DNA-sequenced mark.

image

Have more questions about how the Biomolecule Sequencer works, or how it could benefit Earth or further space exploration? Ask the team of scientists behind the investigation, who will be  available for questions during a Reddit Ask Me Anything on /r/science on Wednesday, Sept. 28 at 2 p.m. EDT. 

The participants are:

Dr. Aaron Burton, NASA Johnson Space Center, Planetary Scientist and Principal Investigator

Dr. Sarah Castro-Wallace, NASA Johnson Space Center, Microbiologist and Project Manager

Dr. David J. Smith, NASA Ames Research Center, Microbiologist

Dr. Mark Lupisella, NASA Goddard Space Flight Center, Systems Engineer

Dr. Jason P. Dworkin, NASA Goddard Space Flight Center, Astrobiologist

Dr. Christopher E. Mason, Weill Cornell Medicine Dept. of Physiology and Biophysics, Associate Professor


Tags
8 years ago

Another Station Upgrade:

Spacewalkers Jeff Williams and Kate Rubins to install new TV cameras 

On Thursday, Sept. 1, U.S. astronauts Jeff Williams and Kate Rubins will conduct the station’s 195th American spacewalk. As part of their activities, the pair will install the first of several enhanced high-definition television cameras that will monitor activities outside the station, including the comings and goings of visiting cargo and crew vehicles

image

Working on the station’s backbone, or truss, Williams and Rubins will retract a thermal radiator that is part of the station’s cooling system. 

image

As was the case for their first spacewalk together on Aug. 19, Williams will be designated as extravehicular crew member 1 (EV1), wearing a spacesuit with a red stripe, while Rubins will be EV2, wearing a suit with no stripes.

Watch LIVE!

Coverage of the spacewalk begins at 6:30 a.m. EDT on Thursday, Sept. 1; with the spacewalk scheduled to begin at 8:05 a.m. EDT. Stream live online HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Jeff Williams: Record Breaker

Astronaut becomes U.S. record holder for most cumulative time in space!

The Olympics are over, but Americans are STILL breaking records. NASA astronaut Jeff Williams just broke Scott Kelly’s record of 520 cumulative days spent in space. When Williams returns to Earth on Sept. 5, he will have racked up 534 days in space. To celebrate this amazing achievement, here are some of the best images taken during his four spaceflights.

image

STS-101 Atlantis:

During May 2000, Williams made his first spacewalk during space shuttle Atlantis’ STS-101 mission. On this 10-day mission, Williams’ first spacewalk lasted nearly seven hours. He is pictured here outside the space station.

image

Expedition 13:

Williams experienced his first long-duration mission in 2006, when he served as flight engineer for Expedition 13 space station mission. During his time in orbit, he performed two spacewalks, saw the arrival of two space shuttle missions and resumed construction of the orbiting laboratory during his six-month tour. While on one of those spacewalks, Williams took this selfie.

image

Expedition 21/22:

Williams returned to space for another six-month mission in 2009 as a flight engineer on Expedition 21 and commander of Expedition 22. During that time, he hosted the crews of two space shuttle missions. The U.S.-built Tranquility module and cupola were installed on station. Here is an image of the then newly installed cupola.

image

Expedition 47/48:

This time around, Williams has been onboard the space station since March 2016, where he served as flight engineer for Expedition 47 and now commands Expedition 48. With over 7,000 retweets on Williams’ photo of an aurora from space, his Twitter followers were clearly impressed with his photography skills.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
8 years ago

Spacewalk Friday: Installing a New "Parking Spot" on Station

This Friday, Aug. 19, two U.S. astronauts will install a new gateway for American commercial crew spacecraft at the International Space Station. 

image

Commercial crew flights from Florida’s Space Coast to the International Space Station will restore America’s human spaceflight launch capability and increase the time U.S. crews can dedicate to scientific research.

image

The adapter being installed (imaged below) was launched on a SpaceX Dragon cargo spacecraft and arrived on orbit July 20. This ring is known as an International Docking Adapter, or IDA, and its main purpose is to provide a port for spacecraft bringing astronauts to the station in the future. Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of arrival and docking with the station without input from the astronauts. 

NASA astronauts Jeff Williams and Kate Rubins will perform the spacewalk to install the equipment this Friday, Aug. 19. This will be the fourth spacewalk in Williams’ career and the first for Rubins.

image

Four previous spacewalks...like the one below...helped set the stage for installation of this docking adapter. During those previous spacewalks, other crew members laid hundreds of feet of power and data cables outside the space station. 

image

On Wednesday, the robotics team using the Canadarm2 and its attached “Dextre” manipulator, will reach into the SpaceX Dragon trunk and pull out the docking adapter and position it for Friday’s spacewalk activities.

image

The morning of the spacewalk, while the astronauts are getting suited up, the robotic arm will position the docking adaptor near the port so that it will be ready for installation.

image

The two astronauts will venture outside the space station to install the first International Docking Adapter (IDA). This new adapter port will provide a parking space for U.S. Commercial Crew vehicles.

Watch LIVE!

Coverage of the spacewalk begins at 6:30 a.m. EDT on Friday, Aug. 19; with the spacewalk scheduled to begin at 8:05 a.m. EDT. Stream live online HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Space Station Science: Biological Research

image

Each month, we highlight a different research topic on the International Space Station. In August, our focus is biological research. Learning how spaceflight affects living organisms will help us understand potential health risks related to humans on long duration missions, including our journey to Mars.

image

Cells, microbes, animals and plants are affected by microgravity, and studying the processes involved in adaptation to spaceflight increases our fundamental understanding of biological processes on Earth. Results on Earth from biological research in space include the development of new medications, improved agriculture, advancements in tissue engineering and regeneration, and more. 

Take a look at a few of the biological research experiments performed on space station:

Biomolecule Sequencer

image

Living organisms contain DNA, and sequencing DNA is a powerful way to understand how they respond to changing environments. The Biomolecule Sequencer experiment hopes to demonstrate (for the first time) that DNA sequencing is feasible in an orbiting spacecraft. Why? A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA- based life elsewhere in the solar system.

Ant-stronauts

image

Yes, ant-stronauts…as in ants in space. These types of studies provide insights into how ants answer collective search problems. Watching how the colony adapts as a unit in the quest for resources in extreme environments, like space, provides data that can be used to build algorithms with varied applications. Understanding how ants search in different conditions could have applications for robotics.

TAGES

image

The TAGES experiment (Transgenic Arabidopsis Gene Expression System) looks to see how microgravity impacts the growth of plant roots. Fluorescent markers placed on the plant’s genes allow scientists to study root development of Arabidopsis (a cress plant) grown on the space station. Evidence shows that directional light in microgravity skews root growth to the right, rather than straight down from the light source. Root growth patters on station mimic that of plants grown at at 45% degree angle on Earth. Space flight appears to slow the rate of the plant’s early growth as well.

Heart Cells

image

Spaceflight can cause a suite of negative health effects, which become more problematic as crew members stay in orbit for long periods of time. Effects of Microgravity on Stem Cell-Derived Cardiomycytes (Heart Cells) studies the human heart, specifically how heart muscle tissue contracts, grows and changes in microgravity. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions.

Medaka Fish

image

Chew on these results…Jaw bones of Japanese Medaka fish in microgravity show decreased mineral density and increased volume of osteoclasts, cells that break down bone tissue. Results from this study improve our understanding of the mechanisms behind bone density and organ tissue changes in space.

These experiments, and many others, emphasize the importance of biological research on the space station. Understanding the potential health effects for crew members in microgravity will help us develop preventatives and countermeasures.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What Astronauts in Space Eat in a Day

There was a time when even NASA didn’t know if humans could eat in the microgravity environment of space. Thankfully for the future of long-term crewed missions, John Glenn proved that it was indeed possible when he ate applesauce from an aluminum tube while orbiting the Earth in 1962.

image

Since then, the research conducted at our Space Food Systems Laboratory at Johnson Space Center has resulted in improved taste, variety and packaging of foods intended for space travel. Current-day astronauts are now given a standard menu of over 200 approved food and drink items months before launch, allowing them to plan their daily meals far in advance.

image

So, with such a variety of foods to choose from, what does the typical astronaut eat in a day?  Here is an example from the International Space Station standard menu:

image

Sounds tasty, right?

image

However, these are only suggestions for astronauts, so they still have some choice over what they ultimately eat. Many astronauts, including Tim Kopra, combine different ingredients for meals.

image

Others plan to eat special foods for the holidays. Astronauts Scott Kelly and Kjell Lindgren did just that on Thanksgiving last year when they ate smoked turkey, candied yams, corn and potatoes au gratin.

image

Another key factor that influences what astronauts eat is the availability of fresh fruits and vegetables, which are delivered via resupply spacecrafts.  When these foods arrive to the space station, they must be eaten quickly before they spoil. Astronaut Tim Peake doesn’t seem to mind.

image

Nutrition is important to help counteract some of the effects spaceflight have on the body, such as bone and muscle loss, cardiovascular degradation, impairment of immune function, neurovestibular changes and vision changes. 

“Nutrition is vital to the mission,” Scott M. Smith, Ph.D., manager for NASA’s Nutritional Biochemistry Lab said. “Without proper nutrition for the astronauts, the mission will fail. It’s that simple.”

image

We work hard to help astronauts feel less homesick by providing them with food that not only reminds them of life back on Earth, but is also nutritious and healthy. 

image

Here are some unusual space food inventions that are no longer in use:

image

Gelatin-coated sandwich and cookie cubes

Compressed bacon squares

Freeze dried ice cream

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What’s On Board the Next SpaceX Cargo Launch?

Cargo and supplies are scheduled to launch to the International Space Station on Monday, July 18 at 12:45 a.m. EDT. The SpaceX Dragon cargo spacecraft will liftoff from our Kennedy Space Center in Florida.

image

Among the arriving cargo is the first of two international docking adapters, which will allow commercial spacecraft to dock to the station when transporting astronauts in the near future as part of our Commercial Crew Program.

image

This metallic ring, big enough for astronauts and cargo to fit through represents the first on-orbit element built to the docking measurements that are standardized for all the spacecraft builders across the world.

image

Its first users are expected to be the Boeing Starliner and SpaceX Crew Dragon spacecraft, which are both now in development.

What About the Science?!

Experiments launching to the station range from research into the effects of microgravity on the human body, to regulating temperature on spacecraft. Take a look at a few:

A Space-based DNA Sequencer

image

DNA testing aboard the space station typically requires collecting samples and sending them back to Earth to be analyzed. Our Biomolecule Sequencer Investigation will test a new device that will allow DNA sequencing in space for the first time! The samples in this first test will be DNA from a virus, a bacteria and a mouse.

How big is it? Picture your smartphone…then cut it in half. This miniature device has the potential to identify microbes, diagnose diseases and evaluate crew member health, and even help detect DNA-based life elsewhere in the solar system.

OsteoOmics

What’s On Board The Next SpaceX Cargo Launch?

OsteoOmics is an experiment that will investigate the molecular mechanisms that dictate bone loss in microgravity. It does this by examining osteoblasts, which form bone; and osteoclasts, which dissolves bone. New ground-based studies are using magnetic levitation equipment to simulate gravity-related changes. This experiment hopes to validate whether this method accurately simulates the free-fall conditions of microgravity.

Results from this study could lead to better preventative care or therapeutic treatments for people suffering bone loss, both on Earth and in space!

Heart Cells Experiment

image

The goals of the Effects of Microgravity on Stem Cell-Derived Heart Cells (Heart Cells) investigation include increasing the understanding of the effects of microgravity on heart function, the improvement of heart disease modeling capabilities and the development of appropriate methods for cell therapy for people with heart disease on Earth.

Phase Change Material Heat Exchanger (PCM HX)

image

The goal of the Phase Change Material Heat Exchanger (PCM HX) project is to regulate internal spacecraft temperatures. Inside this device, we're testing the freezing and thawing of material in an attempt to regulate temperature on a spacecraft. This phase-changing material (PCM) can be melted and solidified at certain high heat temperatures to store and release large amounts of energy.

Watch Launch!

Live coverage of the SpaceX launch will be available starting at 11:30 p.m. EDT on Sunday, July 17 via NASA Television. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Five Things to Know About NASA Astronaut Kate Rubins

image

Among the newest crew on the International Space Station is U.S. astronaut Kate Rubins, who will assume the role of Flight Engineer for Expeditions 48 and 49. Here are five things you should know about her:

1. She was chosen from a pool of over 3,500 applicants to receive a spot on our 2009 astronaut training class.

image

After being selected, Rubins spent years training at Johnson Space Center to become an astronaut. She learned how to use the complex station systems, perform spacewalks, exercise in space and more. Some training even utilized virtual reality.

2. She has a degree in cancer biology.

image

After earning a Bachelor of Science degree in Molecular Biology from the University of California, San Diego in 1999, Rubins went on to receive a doctorate in Cancer Biology from Stanford University Medical School Biochemistry Department and Microbiology and Immunology Department in 2005. In other words, she’s extremely smart.

3. Her research has benefited humanity.

image

Rubins helped to create therapies for Ebola and Lassa viruses by conducting research collaboratively with the U.S. Army. She also aided development of the first smallpox infection model with the U.S. Army Medical Research Institute of Infectious Diseases and the Centers for Disease Control and Prevention. NBD. It will be exciting to see the research come out of a mission with a world-class scientist using a world-class, out-of-this-world laboratory!

4. She is scheduled to be the first person to sequence DNA in space.

image

During her time at the space station, Rubins will participate in several science experiments. Along with physical science, Earth and space science and technology development work, she will conduct biological and human research investigations. Research into sequencing the first genome in microgravity and how the human body’s bone mass and cardiovascular systems are changed by living in space are just two examples of the many experiments in which Rubins may take part.

5. In her spare time, she enjoys scuba diving and triathlons...among other things.

image

Rubins was on the Stanford Triathlon team, and also races sprint and Olympic distance. She is involved with health care/medical supply delivery to Africa and started a non-profit organization to bring supplies to Congo. Her recent pursuits involve flying airplanes and jumping out of them -- not simultaneously. 

image

Rubins is scheduled to arrive at the International Space Station at 12:12 a.m. Saturday, July 9. After her launch on Wednesday, July 6, the three crew members traveled 2 days before docking to the space station’s Rassvet module. 

Watch live coverage of docking and their welcoming starting at 11:30 p.m. EDT Friday, July 8 on NASA Television.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Space Station Research: Air and Space Science

Each month, we highlight a different research topic on the International Space Station. In June, our focus is Air and Space Science.

image

How is the space station being used to study space? Studies in fundamental physics address space, time, energy and the building blocks of matter. Recent astronomical observation and cosmological models strongly suggest that dark matter and dark energy, which are entities not directly observed and completely understood, dominate these interactions at the largest scales.

image

The space station provides a modern and well-equipped orbiting laboratory for a set of fundamental physics experiments with regimes and precision not achievable on the ground. 

For example, the CALorimetric Electron Telescope (CALET) is an astrophysics mission that searches for signatures of dark matter (pictured above). It can observe discrete sources of high energy particle acceleration in our local region of the galaxy. 

How is the space station contributing to aeronautics? It provides a long-duration spaceflight environment for conducting microgravity physical science research. This environment greatly reduces buoyancy-driven convection and sedimentation in fluids. By eliminating gravity, space station allows scientists to advance our knowledge in fluid physics and materials science that could lead to better designated air and space engines; stronger, lighter alloys; and combustion processes that can lead to more energy-efficient systems.

image

How is the space station used to study air? The Cloud-Aerosol Transport System (CATS) is a laster remote-sensing instrument, or lidar, that measures clouds and tiny aerosol particles in the atmosphere such as pollution, mineral dust and smoke. These atmospheric components play a critical part in understanding how human activities such as fossil fuel burning contribute to climate change.

image

The ISS-RapidScat is an instrument that monitors winds for climate research, weather predictions and hurricane monitoring from the International Space Station.

image

For more information on space station research, follow @ISS_Research on Twitter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

More Space...in Space

How do you create more space…in space? The Bigelow Expandable Activity Module (BEAM) is one solution to creating additional working space on the International Space Station.

image

BEAM will be deployed to its full size this Thursday, May 26, and begin its two-year technology demonstration attached to the space station. The astronauts aboard will first enter the habitat on June 2, and re-enter the module several times a year throughout the test period. While inside, they will retrieve sensor data and assess conditions inside the module.

image

Why Use an Expandable Habitat?

Expandable habitats are designed to take up less room on a spacecraft, but provide greater volume for living and working in space once expanded. This first test of an expandable module will allow investigators to gauge how well it performs and specifically, how well it protects against solar radiation, space debris and the temperature extremes of space.

image

BEAM launched April 8 aboard a SpaceX Dragon cargo spacecraft, and is an example of our increased commitment to partnering with industry to enable the growth of commercial use of space.

Get Involved!

More Space...in Space

During expansion, we will provide live Mission Control updates on NASA Television starting at 5:30 a.m. EDT on Thursday, May 26.

image

Make your own origaBEAMi!

image

To coincide with the expansion, here is a simple and fun activity called “origaBEAMi” that lets you build your own miniature inflatable BEAM module. Download the “crew procedures” HERE that contain step-by-step instructions on how to print and fold your BEAM module. You can also view a “how to” video HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Physical Science...In Space!

Each month, we highlight a different research topic on the International Space Station. In May, our focus is physical science.

image

The space station is a laboratory unlike any on Earth; on-board, we can control gravity as a variable and even remove it entirely from the equation. Removing gravity reveals fundamental aspects of physics hidden by force-dependent phenomena such as buoyancy-driven convection and sedimentation.

image

Gravity often masks or distorts subtle forces such as surface tension and diffusion; on space station, these forces have been harnessed for a wide variety of physical science applications (combustion, fluids, colloids, surface wetting, boiling, convection, materials processing, etc).

image

Other examples of observations in space include boiling in which bubbles do not rise, colloidal systems containing crystalline structures unlike any seen on Earth and spherical flames burning around fuel droplets. Also observed was a uniform dispersion of tin particles in a liquid melt, instead of rising to the top as would happen in Earth’s gravity. 

Physical Science...In Space!

So what? By understanding the fundamentals of combustion and surface tension, we may make more efficient combustion engines; better portable medical diagnostics; stronger, lighter alloys; medicines with longer shelf-life, and buildings that are more resistant to earthquakes.

image

Findings from physical science research on station may improve the understanding of material properties. This information could potentially revolutionize development of new and improved products for use in everything from automobiles to airplanes to spacecraft.

For more information on space station research, follow @ISS_Research on Twitter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Around the World 100,000 Times

The International Space Station is a microgravity laboratory in which an international crew of six people live and work while traveling at a speed of five miles per second (or 17,500 miles per hour), orbiting Earth every 90 minutes.

Monday, May 16, marks the International Space Station’s 100,000th orbit!

image

That’s more than 2,643,342,240 miles traveled! Which is also like 10 round trips to Mars, OR nearly the distance to Neptune!

image

The space station has been in orbit for over 17 years, and during that time, over 1,922 research investigations have been performed. More than 1,200 scientific results publications have been produced as a result. 

Important studies like the VEGGIE experiment, which is working to grow plants in microgravity, and the Twin’s Study, which is studying the impacts of microgravity on the human body, are helping us on our journey to Mars. Using this unique orbiting laboratory as a place to conduct research is helping us learn important things for future deep space missions. 

image

There have even been 222 different people that have visited the space station. This includes the current crew that is working and living on orbit. 

Did you know that the space station is the third brightest object in the sky? If you know when and where to look up, you can spot it on your own! Find out when and where to look up HERE. 

On Snapchat? Watch today’s Live Story to discover more about the orbiting laboratory and get a tour of the station! You can also add ‘nasa’ on Snapchat to get a regular dose of space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Exploring an Asteroid Without Leaving Earth

image

You may remember that back in February, four crew members lived and worked inside our Human Research Exploration Analog (HERA). That crew, made up of 4 women, simulated a 715-day journey to a Near-Earth asteroid. Then in May, a second crew of 4 – this time, 4 men, launched on their simulated journey to that same asteroid.  These 30 day missions help our researchers learn how isolation and close quarters affect individual and group behavior. Studies like this at our Johnson Space Center prepare us for long duration space missions, like a trip to an asteroid or even to Mars. We now have a third crew, living and working inside the HERA. This is the spacecraft’s 11th crew. The mission began on June 11, and will end on August 10.

The crew members are currently living inside this compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. The only people they will talk with regularly are mission control and each other.

Exploring An Asteroid Without Leaving Earth

The HERA XI crew is made up of 3 men and 1 woman selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection. The four would-be astronauts are:

• Tess Caswell

• Kyle Foster

• Daniel Surber

• Emmanuel Urquieta

image

What will they be doing?

The crew will test hardware prototypes to get “the bugs worked out” before they are used in off-Earth missions. They will conduct experiments involving plants, brine shrimp, and creating a piece of equipment with a 3D printer. After their visit to an asteroid, the crew will simulate the processing of soil and rocks they collected virtually. Researchers outside of the spacecraft will collect data regarding team dynamics, conflict resolution and the effects of extended isolation and confinement.

image

How real is a HERA mission?

When we set up an analog research investigation, we try to mimic as many of the spaceflight conditions as we can. This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way, depending on how far their simulated spacecraft is from Earth.

Obviously we are not in microgravity, so none of the effects of microgravity on the human or the vehicle can be tested. You can simulate isolation to a great degree – although the crew knows they are note really isolated from humanity, the communications delays and ban from social media help them to suspend reality. We emulate confinement and the stress that goes along with it.

Scientists and researchers use analogs like HERA to gather more data for comparison to data collected aboard the space station and from other analogs so they can draw conclusions needed for a real mission to deep space, and one day for a journey to Mars.            

image

A few other details:

The crew follows a timeline that is similar to one used for the     ISS crew.

They work 16 hours a day, Monday through Friday. This     includes time for daily planning, conferences, meals and exercises.  

They will be growing and taking care of plants and     brine shrimp, which they will analyze and document.

Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.

Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.

As with the 2 earlier missions this year, this mission will include 22 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.

image

Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.

For more information on our Human Research Program, visit: www.nasa.gov/hrp.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Science, Technology, Engineering and Math: STEM

Today is College Signing Day and we’re working with the White House to celebrate all graduating seniors and inspire more young people to Reach Higher and enroll in higher education.

image

Additionally, choosing a degree within a STEM (Science, Math, Engineering and Technology) field enables the United States to remain the global economic and technological leader. We feel that it’s our duty to help inspire the next generation of scientists, technologists, engineers and astronauts.

image

It’s important that each and every student feels empowered and equipped with the knowledge to solve tough problems, evaluate evidence and analyze information. These are all skills students can learn through studying a subjects in STEM.

College is one of the stepping stones to many careers, including becoming an astronaut! Here are a few of our astronauts on their college graduation day, along with their astronaut portrait. 

Astronaut Victor Glover

image

Undergraduate: California Polytechnic State University Graduate: Air University and Naval Postgraduate School Astronaut Class: 2013

Astronaut Reid Wiseman

image

Undergraduate: Rensselaer Polytechnic Institute Graduate: Johns hopkins University Astronaut Class: 2009

Astronaut Thomas Marshburn

image

Undergraduate: Davidson College Graduate: University of Virginia, Wake Forest University and University of Texas medical Branch Astronaut Class: 2004

Astronaut Karen Nyberg

image

Undergraduate: University of North Dakota Graduate: University of Texas at Austin Astronaut Class: 2000

Astronaut Bob Behnken

image

Undergraduate: Washington University Graduate: California Institute of Technology Astronaut Class: 2000

Astronaut Peggy Whitson

image

Undergraduate: Iowa Wesleyan College Graduate: Rice University Astronaut Class: 1996

Astronaut Joseph Acaba

image

Undergraduate: University of California Graduate: University of Arizona Astronaut Class: 2004

Astronaut Rex Walheim

image

Undergraduate: University of California, Berkeley Graduate: University of Houston Astronaut Class: 1996

Whether you want to be an astronaut, an engineer or the administrator of NASA, a college education opens a universe of possibilities:

Administrator Charles Bolden

image

Here, Administrator Bolden wears the jersey of Keenan Reynolds, a scholar athlete who graduates from the Naval Academy this year. His jersey is on its way to the college football hall of fame. Bolden holds a drawing of himself as a midshipman in the Navy. 

Deputy Administrator Dava Newman

image

Deputy Administrator Dava Newman sports her college shirt, along with Lisa Guerra, Technical Assistant to the Associate Administrator. Both women studied aerospace engineering at Notre Dame. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags