Laravel

Thelifeofastar - Blog Posts

4 years ago
THE LIFE OF A STAR: WHAT GOES AROUND, COMES AROUND

THE LIFE OF A STAR: WHAT GOES AROUND, COMES AROUND

Previously on The Life of a Star, Chapter 6 ...

"But what happens after the shell is fused? We'll get back to that in Chapter 7, where we'll discuss White Dwarfs and Planetary Nebulae."

        After a low-mass star loses its hydrogen core, it becomes a mighty Red Giant - the star contracts and then heats up again, igniting hydrogen shell fusion and swelling the star to epic proportions. That is, until the hydrogen shell and the helium core and all fused up, in which the helium shell will begin to fuse. Remember the last chapter, when I said that these stars don't have enough pressure to fuse the results of the triple-alpha process? Well, I wasn't lying.

        And unlike the end of hydrogen fusion - where low-mass stars have a "2nd life" and continue fusing the elements - this means the end for our star.  Now, due to the build-up of carbon and oxygen in the core (and the lack of enough pressure to fuse these elements), the star has run out of fuel. This cancels out gas pressure, which breaks the hydrostatic equilibrium. Gravity wins the constant battle within the star, and the core collapses.

        The leftover core - tiny and hot - is called a Wolf-Rayet type star and squeezed into a volume one-millionth the size of the original star (Harvard). Now, why does the star stop here? If gravity overpowers the pressure inside the star, why does it not completely collapse into a black hole? Well, that's due to a little thing called electron degeneracy pressure.  Basically, the Pauli exclusion principle states that "no two electrons with the same spin can occupy the same energy state in the same volume." Due to the core collapse, electrons are forced together. The Pauli exclusion principle predicts that these electrons, once having filled a lower energy state, will move to a higher one and begin to speed up. This creates pressure and prevents the core from further collapse. However, at a certain mass, this becomes impossible to maintain. White dwarfs have something called the Chandrasekhar limit, which states that white dwarfs cannot exist if their original mass is over 1.44 times the mass of the Sun. This is due to mass-radius relationships, something we'll discuss in the next chapter.

        One of my favorite things about stars is the fact that they're a cycle - the death of some stars causes the birth of others. White dwarfs do this, too, by creating something we talked about in Chapter 3: Planetary Nebulae.

        The collapsed Wolf-Rayet type star is extremely small, with high density and temperature. Streams of photons/energy/heat - stellar winds - push out the cooler outer layers of the dead star (Astronomy Notes). The core emits UV radiation, which ionizes the hydrogen and causes it to emit light, forming fluorescent and spherical clouds of gas and dust surrounding the hot white dwarf. These are Planetary Nebulae, which can later be clumped by gravity and spun to create a new star. The cycle continues (Uoregon).

        The leftover core, the White Dwarf, is characterized by a low luminosity (due to the lack of new photons, which the star will start to lose by radiation) and a mass under about 1.44 times that of the Sun.

        Due to the intense gravity, the White Dwarf (despite being very large in mass) has a radius comparable to that of the Earth. If you consult the density equation (d=m/v, which basically means that if you enlarge or shrink either the mass or the volume that the density will increase), White Dwarfs have enormous densities. The core is a compact of carbon and oxygen. Because the star is unable to fuse these elements, they kind of just ... sit there. Surrounding this is a shell of helium and a small hydrogen envelope. Some even have a very thin layer of carbon (Britannica).

        However, the White Dwarf isn't the end for the star. There's one more stage for the star to go through before completely "dying": becoming a Black Dwarf.

        After the core is left behind, there Is no fuel left to burn. That means no new energy production. However, the leftover heat from the contraction remains, and the star will begin to cool down. Higher mass White Dwarfs, due to having a smaller radius, radiate this away slower than the low-mass ones. There are two types of cooling: radiative and neutrino. Radiative cooling is simple: as the star gives off light and energy outward, it loses heat. Neutrino cooling is a bit more complex: at extremely hot temperatures, gamma radiation passes electrons, and this reaction creates a pair of neutrinos. Because neutrinos interact very weakly with matter, they escape the White Dwarf quickly, taking energy with them. It's also possible to have a hunch of crystal in the center of a Black Dwarf: "On the other hand, as a white dwarf cools, the ions can arrange themselves in an organized lattice structure when their temperature falls below a certain point. This is called crystallization and will release energy that delays the cooling time up to 30%." (Uoregon).

        The White Dwarf will become a Black Dwarf after it radiates away all of its heat and becomes a cold, dark shell of its former self. Because it's radiated away all of its heat, it emits no light, hence the name. However, according to theoretical physics, there isn't a single Black Dwarf in the universe. Why? Because it should take at least a hundred million, billion years for a White Dwarf to cool down into a Black Dwarf. Because the universe is predicted to be around 13.7 billion years old, there hasn't been enough time for a single White Dwarf to completely cool down (space.com).

        However, there's one last thing that can happen to a White Dwarf. And that's where things in this book will start to get explosive.

        White Dwarfs in binary star systems (where two stars orbit around a center of mass, we'll touch on it more in Additional Topics) can undergo a Classical Nova. These supernovae occur in systems with one White Dwarf and one main-sequence star. If they orbit close enough, the White Dwarf will begin to pull the hydrogen and helium from the other star in what is called an Accretion Disk, what is to say a disk of plasma and particles which spiral inwards due to gravity and feeds one body off of another. The accretion of this plasma onto the surface of the White Dwarf increases pressure and temperature so much that fusion reactions spark and the outburst of energy ejects the shell in a burst of light - a nova (Cosmos).

        This process doesn't end, however. It can repeat itself again and again in what is called a Recurrent Nova. We know the existence of these based on pictures of the same star system with expanding shells, the aftermath of recurrent novae. Because White Dwarfs are the most common star death in the universe, and most stars are in binary or multiple star systems, novae are fairly common (Uoregon).

        Our discussion of novae will be an excellent transition into our next topic: supernovae! This will be the beginning of the end for the High-mass stars we talked about in Chapter 6, and we’ll even talk a little bit more about White Dwarf collisions and how they are related to supernovae, neutron stars, and more!

        From here on out, stars are going to become much more dramatic - and all the cooler (well, not really)!

First -  Chapter 1: An Introduction

Previous -  Chapter 6: The End (But Not Really)

Next - Chapter 8: Why We’re Literally Made of Star-stuff (unpublished)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago

Update on The Life of a Star, Chapter 7

So I’m a little over halfway done (I should be ready for some editing on Saturday) with this chapter and I think this might be my one longest yet! My current longest is Chapter 6, with 1,245 words. I’m currently at around 700 words with this one, and I’ve got at least 400 more to go. Anyway, I’m really excited for this one. We’ll be touching on nebulae again, and finally addressing our first ending for a star. 

We’ve only got three more chapters left, plus a possible one for additional topics. I’ll be sad to end this one, but I’m starting to gather ideas for the next book. Maybe on the methods of observing the universe? Maybe on random astrophysics topics? Perhaps one on galaxies? Cosmology? The Four Fundamental Forces? Haven’t decided yet xD

I think you’ll all really like these last chapters I have planned, or at least I hope you do. Thanks for reading :)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago

This is a nice little website which I used to outline my Life of a Star series.

It’s got some good info if you want a little brief course on stars (though my series is definitely way more detailed).

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago
THE LIFE OF A STAR: THE END (BUT NOT REALLY)

THE LIFE OF A STAR: THE END (BUT NOT REALLY)

In our last chapter, we discussed the main-sequence stage of a star. In this chapter, we'll be discussing when the main-sequence stage ends, and what happens when it does.

        In order to live, stars are required to maintain a hydrostatic equilibrium - which is the balance between the gravitational force and the gas pressure produced from nuclear fusion within the core. If gravity were to be stronger than this pressure, the star would collapse. Likewise, if the pressure were to be stronger than gravity, the star would explode. It's the balance - the equilibrium - between these two forces which keeps a star stable. Stars contain hydrogen - their primary fuel for fusion - in their core, shell, and envelope. The heat and density in the core is the only area in a main-sequence star that has enough pressure to undergo fusion. However, what happens once hydrogen runs out in the core is where things start to get ... explosive.

        For this, we'll be having two discussions: what happens in low-mass stars, versus what happens in high-mass stars.

                                                                      ~ Low-Mass Stars ~

        Low-mass stars are classified as those less than 1.4 times the mass of the sun (NASA). While low-mass stars last a lot longer than their higher-mass counterparts, these stars will eventually have fused all of the hydrogens in their core. Because the core doesn't have enough pressure to fuse helium (as it takes more pressure and heat to fuse heavier elements than less), gas pressure stops and gravity causes the core to contract. This converts gravitational potential energy into thermal energy, which heats up the hydrogen shell until it is hot enough to begin fusing. It also produces extra energy, which overcomes gravity in small amounts and causes the star to swell up a bit. As it expands, the pressure lessens and it cools. The increased energy also causes an increase in luminosity. This is what is now called a Red Giant star (ATNF). 

        Red Giants grow a lot, averagely reaching sizes of 100 million to 1 billion kilometers in diameter, which is 100-1,000 times larger than the sun. The growth of the star causes energy to be more spread out, and so cools it down to only around 3,000 degrees Celsius (still though, pretty hot). Because energy correlates with heat, and the red part of the electromagnetic spectrum is less energized, the stars glow a reddish color. Hence, the name Red Giant. Due to the current size of the sun, we can conclude that it will eventually become a Red Giant. This could be a big problem (literally), as the sun will grow so large that it will either consume Earth or become so close that it would be too hot to live. However, this won't be happening for around 5 billion years, so there's nothing immediately to worry about (Space.com).

        As more hydrogen is fused within the shell of the Red Giant, the produced helium falls down into the core. The increased mass leads to increased pressure, which leads to increased heat. Once the temperature in the core reaches 100 K (at which point the helium produced has enough energy to overcome repulsive forces), helium begins to fuse. This process is called the Triple Alpha Process (as the helium being fused are actually alpha particles, helium-4 nuclei), where three of the helium particles combine to form carbon-12, and sometimes a fourth fuses along to form oxygen-16. Both processes release a gamma-ray photon. In low-mass stars, the Triple Alpha Process spreads so quickly that the entire helium ore is fusing in mere minutes or hours. This is, accurately called, the Helium Flash. 

        After millions of years, the helium in the core will run out. Now the core is made entirely of the products of helium fusion: carbon and oxygen nuclei. As the fusion stops, gas pressure shrinks, and gravity causes the star to contract yet again. The temperature needed to fuse carbon and oxygen is even higher, as heavier elements require more energy to fuse (because, with more protons, there's more Coulombic Repulsion). However, this temperature cannot be reached, because the gravity acting on the core is not strong enough to create enough heat. The core can burn no longer.

        The helium shell of the star begins to fuse, as gravity IS strong enough to do that. The extra energy and gas pressure created causes the star to expand even more so now. The helium shell is not dense enough to cause one single helium flash, so small flashes occur every 10,000-100,000 years (due to the energy released, this is called a thermal pulse). Radiation pressure blows away most of the outer layer of the star, which gravity is not strong enough to contain. The carbon-rich molecules form a cloud of dust which expands and cools, re-emitting light from the star at a longer wavelength (ATNF).

        But what happens after the shell is fused? We'll get back to that in Chapter 7, where we'll discuss White Dwarfs and Planetary Nebulae.

        It's also important to note that not every low-mass star needs to become a Red Giant. Stars that are smaller than half the mass of the Sun (like, Red Dwarfs) are fully convective, meaning that the surface, envelope, shell, and core of star materials all mix. Because of this mixing, there is no helium buildup in the core. This means that there is not enough pressure to fuse the helium in fully convective stars, and so they skip the contraction and expansion phases of Red Giant Stars. Instead, with no gas pressure to counteract gravity, the star collapses in on itself and forms a White Dwarf (Cosmos).

                                                                     ~ High-Mass Stars ~

         High-mass stars are classified as those more than 1.4 times the mass of the sun (NASA). High-Mass Stars, as opposed to their Low-Mass counterparts, use up their hydrogen fast, and as such have much shorter lives. Just like Low-Mass Stars, they'll eventually run out of hydrogen in both their core and their shell, and this will cause the star to contract. Their density and pressure will become so strong that the core becomes extremely hot, and helium fusion starts quickly (there is no helium flash because the process of fusion will begin slowly, rather than in "a flash"). The release of energy will cause it to expand and cool into a Red Supergiant, and will also begin the fusion of the helium shell. 

        Once all of the helium is gone, leaving carbon and oxygen nuclei, the star contracts yet again. The mass (and the gravity squeezing it into a very small space with a very large density) of a high-mass star will be enough to generate the temperatures needed for carbon fusion. This produces sodium, neon, and magnesium. The neon can also fuse with helium (whose nuclei is released in the neon fusion) to create magnesium. Once the core runs out of neon, oxygen fuses. This process keeps going, creating heavier and heavier elements, until it stops at iron. At this point, the supergiant star resembles an onion. It is layered: with the heavier elements being deeper within the star, and the lighter elements closer to the surface (ATNF).

        But what happens after the star finally gets to iron? We'll get back to that in Chapters 8, 9, and 10 - where we'll discuss Supernovae, Neutron Stars, and Black Holes.

        We’re nearing the end of our star’s life, and now it’s time to look into the many ways it can go out.

        If our first five chapters were all about life, these next five will be all about death.

First -  Chapter 1: An Introduction

Previous -  Chapter 5: A Day in the Life

Next - Chapter 7: What Goes Around, Comes Around

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago
THE LIFE OF A STAR: A DAY IN THE LIFE

THE LIFE OF A STAR: A DAY IN THE LIFE

Stars are born, and then they live. If a body is large enough and has enough pressure in its core, it will squeeze to fuse hydrogen. The hydrogen in a star's core fuses into helium, releasing photons and fueling the star. The heat created in this process attempts to expand the star, but as their gravity is so strong which threatens to collapse them (making it a problem once fusion stops - we'll get to this later!), this creates an equilibrium. And while stars have some things in common, they do have unique qualities of their own.

        Here are the properties that all main sequence stars share: hydrogen fusion, hydrostatic equilibrium ("the inward acting force, gravity, is balanced by outward acting forces of gas pressure and the radiation pressure"), the mass-luminosity relationship (in other words, the more massive a star, the brighter it is), it is the stage where stars spend the most of their lives, and a composition made almost entirely of hydrogen and helium (ATNF - Australia Telescope National Facility).

        Like the planets and our sun, stars have structure. The layers of a star are as follows, from the innermost to the outermost: the core, the radiative and convective zones, the photosphere, the chromosphere, and the corona. The structure of our Sun is illustrated above.

        The core of a star undergoes fusion in order to maintain hydrostatic equilibrium, and prevent the star from collapsing in on itself. As such, the core is the hottest and most dense region of a star (Universe Today). Thermonuclear energy spreads from the core through convection, the process by which heat moves: heat moves up and cold moves down because cold has a higher density than hot (Britannica: convection). Furthermore, some stars are fully convective, while others just have regions of convection. "The location of convection zones is strongly dependent on the star’s mass. Cool and low-mass stars are fully convective ... Stars slightly more massive and warmer than the Sun, also form a convective core." (Stellar Convection). I'll touch on this in the next chapter, where small stars such as Red Dwarfs are fully convective and are able to avoid the Red Giant phase, due to a lack of build-up of particles in their cores.

        In radiative zones, this energy is carried by radiation. In convective zones, it is carried by convection. These zones are not hot or dense enough to undergo nuclear fusion. The photosphere is the surface of a star, then the inner atmosphere (colored red due to the abundance of hydrogen) is the chromosphere, and the outermost atmosphere is the corona (space.com).

        In terms of stellar composition, they are mainly composed of hydrogen and helium (which also happen to be some of the most abundant elements in the universe and are the fuel behind a star's nuclear fusion), but also include heavier elements (such as carbon and oxygen). As observed by spectrums and other observations, stars with a greater amount of heavier elements are typically younger because older stars give these elements off due to mass-loss (ATNF - Australia Telescope National Facility).

        Stars also undergo atomic and molecular processes internally to maintain their hydrostatic equilibrium:

The Proton-Proton Cycle is the main source of energy for cool main-sequence stars, such as the Sun. This cycle fuses four hydrogen nuclei (aka, protons) into one helium nucleus and two neutrinos (some of the original mass is converted into heat energy). Two hydrogen nuclei combine and emit a positron (a positively charged electron) and a neutrino. The hydrogen-2 nucleus captures a proton to become hydrogen-3 and emit a gamma-ray. There are multiple paths after which, but it always results in the same (Britannica: proton-proton cycle).

The CNO Cycle (aka the Carbon-Nitrogen-Oxygen Cycle) is the main source of energy for warmer main-sequence stars. This cycle has the same resultants but the process is much different. *SKIP AHEAD TO AVOID MY NERD RANT* It fuses a carbon-12 nucleus with a hydrogen nucleus to form a nitrogen-13 nucleus and a gamma-ray emission.  The nitrogen-13 emits a positron and becomes carbon-13, which captures another proton/hydrogen nucleus and becomes nitrogen-14 and another gamma-ray. The nitrogen-14 captures a proton to form oxygen-15 and then ejects a positron and becomes nitrogen-15. This, of course, captures another proton and then breaks down into a carbon-12 nucleus and a helium nucleus (an alpha particle). *JUST IN CASE YOU SKIPPED AHEAD* TLDR, it ends up as helium. Nuclear fusion, folks, it's weird (Britannica: CNO cycle).

        The products of these processes aren't just automatically transferred and radiated away from the star. No, first they must make their way through the radiative and convective zones. Neutrinos travel almost at the speed of light, and so are the least affected. Photons also lose some energy during the journey, due to interactions with other particles. This energy heats up the surrounding plasma and keeps it flowing, in turn the convection currents transport energy to the surface (ATNF - Australia Telescope National Facility).

        Even though a star spends most of its life in the main-sequence stage, this cycle of processes and equilibrium ends eventually. In the next chapter, we'll be talking about what happens after a star runs out of hydrogen to fuse - Giant and Super-Giant Stars. 

        The rate at which a star runs through its hydrogen is proportional to its mass: the greater the mass, the faster it runs through hydrogen,  and vice versa (Britannica: star). Then the star will begin to fuse the heavier elements until it meets its match: iron. Then things get real ... explosive.

First -  Chapter 1: An Introduction

Previous -  Chapter 4: A Star is Born

Next -  Chapter 6: The End (But Not Really)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago
THE LIFE OF A STAR: A STAR IS BORN

THE LIFE OF A STAR: A STAR IS BORN

All you need to make a star is dust, gravity, and time.

        Stars form from nebulae's molecular clouds - which are "clumpy, with regions containing a wide range of densities—from a few tens of molecules (mostly hydrogen) per cubic centimetre to more than one million." Stars are only made in the densest regions - cloud cores - and larger cloud cores create more massive stars. Stars also form in associations in these cores. Cores with higher percentages of mass used only for star formation will have more stars bound together, while lower percentages will have stars drifting apart. 

        These cloud cores rotate very slowly and its mass is highly concentrated in its center - while also spinning and flattening into a disk (Britannica: Star Formation). This concentration is caused by gravity. As the mass of the clump increases - it is very cold and close to absolute zero, which increases density and causes atoms to bind together into molecules such as CO and H2 - it's gravity increases and at a certain point, it will collapse under it (Uoregon). The pressure, spinning, and compressing create kinetic energy which continues to heat the gas and increase density.

        Finally, there's the last ingredient: time. The process of these molecular clouds clumping, spinning, concentrating, and collapsing takes quite a while. From start (the cloud core-forming) to finish (the birth of a main-sequence star) - the average time is at about a cool 10 million years (yikes). Of course, this differs with density and mass, but this is the time for a typical solar-type star (StackExchange).

        The next stage in a star's life - after the nebulae - is a protostar.

        After one clump separates from the cloud core, it develops its own identity and gravity, and loose gas falls into the center. This releases more kinetic energy and heats the gas, as well as the pressure. This clump will collapse under gravity, grow in density in the center. and trap infrared light inside (causing it to become opaque) (Uoregon).

        A protostar looks like a normal star - emitting light - but it's just a baby star. Protostars' cores are not hot enough to undergo nuclear fusion and the light they emit (instead of coming from the release of photons after the fusion of atoms) comes from the heat of the protostar as it contracts under gravity. By the time this is formed, the spinning and gravity have flattened the dust and gas into a protostellar disk. The rotation also generates a magnetic field - which generates a protostellar wind - and sometimes even streams or jets of gas into space (LCO).    

        This protostar, which is not much bigger than Jupiter, continues to grow by taking in more dust and gas. The light emitted absorbs dust and is remitted over and over again, resulting in a shift to longer wavelengths and causing the protostar to emit infrared light. The growth of the star is halted as jets of material stream out from the poles - the cause of this has been unidentified, although theories suggest that strong magnetic fields and rotation "act as whirling rotary blades to fling out the nearby gas." (Britannica: Star Formation)

        The "infall" of stars stops by pressure, and the protostar becomes more stable. Eventually, the temperature grows so hot (a few million kelvins) that thermonuclear fusion begins - usually in the form of deuterium (a heavier form of hydrogen), lithium, beryllium, and boron - which radiates light and energy. This starts the pre-main-sequence star phase - also called T Tauri stars - which includes lots of surface activity in the form of flares, stellar winds, opaque circumstellar disks, and stellar jets. In this phase, the star begins to contract - it can lose almost 50% of its mass - and the more massive the star, the shorter the T Tauri phase (Uoregon).

        Eventually, when the star's core becomes hot enough (in some cases, we'll touch on this later), it will begin to fuse hydrogen. This will produce "an outward pressure that balances with the inward pressure caused by gravity, stabilizing the star." (Space.com)

        This will either create an average-sized star or a massive star.

        Nuclear fusion marks the beginning of the main sequence star. A star is born.

        But it isn't always.

        Now that we've discussed the transition from nebulae to main-sequence star, we'll be talking about what happens when hydrogen fusion doesn't occur. Those are called Brown Dwarfs.

        Brown Dwarfs are those stars that form much too small - less than 0.08 the sun's mass - and as a result, they cannot undergo hydrogen fusion (Space.com).

        Brown Dwarfs, are, bigger than planets. They are roughly between the size of Jupiter and our sun. Like protostars, brown dwarfs start by fusing deuterium, and their cores contract and increase in heat as they do so. Brown Dwarfs, however, cannot contract to the size required to heat the core enough to fuse hydrogen. Their cores are dense enough to hold themselves up with pressure. They are much colder compared to main-sequence stars, ranging from 2,800 K to 300 K (the sun is 5,800 K). They are called "Brown Dwarfs" because objects below 2,200 often cold too much and develop minerals in their atmosphere, turning a brown-red color (Britannica: Brown Dwarf).

        Once Brown Dwarfs have fused all of their deuterium, they glow infrared, and the force of gravity overcomes internal pressure (the internal force of nuclear fusion used to keep it stable) as it slowly collapses. They eventually cool down and become dark balls of gas - black dwarfs (NRAO).

        Now that we've covered how stars form - and what happens in certain cases where they are not - we'll be moving to the actual life of a star. Before we talk about the end of a star's life (arguably - my favorite part) we need to discuss main-sequence, cycles, mass, heat, pressure, structure, and more. This is to understand how a star died the way it did.

        Because - when it comes to the menu of star death - stars have a few options to choose from.

First -  Chapter 1: An Introduction

Previous -  Chapter 3: Star Nurseries

Next -  Chapter 5: A Day in the Life

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago

This basically sums it up.

Well, it doesn’t show the other things stars can be after their deaths. But it was a nice video :)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago
THE LIFE OF A STAR: STAR NURSERIES

THE LIFE OF A STAR: STAR NURSERIES

How did this "star stuff" come to exist? The life of stars is a cycle: a star's birth came from a star's death. When it comes to star birth, the star nebulae reigns supreme.

        A Nebula (take a look at pictures, they're some of the most beautiful things in the universe) is a giant cloud of dust and gas. This is the region where new stars are formed. Nebulae live in the space in between stars and between galaxies - called interstellar space (or the interstellar medium) - and are often formed by dying stars and supernovas (NASA). 

        This cloud of particles and gases is mostly made of hydrogen (remember - stars mostly fuse hydrogen!). These appear as patches of light (emission, reflection, or planetary-types) or a dark region against a brighter background (dark-type). This depends on whether "... it reflects light from nearby stars, emits its own light, or re-emits ultraviolet radiation from nearby stars as visible light. If it absorbs light, the nebula appears as a dark patch ..." (The Free Dictionary). 

        There are four main types of nebulae: emission, reflection, dark, and planetary nebulae.

        Emission nebulae are a high-temperature gathering of particles, of which are energized by a nearby ultra-violent-light-emitting star. These particles release radiation as they fall to lower energy states (for more information on electrons moving to energized states and falling back to lower states, read this). This radiation is red because the spectra/wavelength of photons emitted by hydrogen happens to be shifted to the red-end of the visible light spectrum. There are more particles than hydrogen in the nebulae, but hydrogen is the most abundant.

        Next up is the reflection nebulae - which reflect the light of nearby stars. As opposed to emission nebulae, reflection are blue, because "the size of the dust grains causes blue light to be reflected more efficiently than red light, so these reflection nebulae frequently appear blue in color ...." The Reddening Law of Nebula describes that the interstellar dust which forms nebulae affects shorter wavelength light more than longer-wavelengths (CalTech).

        Then there's the "emo" nebulae: dark nebulae. These are, very simply, nebulae which block light from any nearby sources. The lack of light can cause dark nebulae to be very cold and dark (hence their name), and the heat needed for star formation comes in the form of cosmic rays and gravitational energy as dust gathers. Many stars near dark nebulae emit high levels of infrared light (this type is much more intricate then I've explained, but that summary will do for now. If you're interested in learning more, read this).

        Finally, there are planetary nebulae. And these aren't nebulae made of planets. These nebulae are formed when stars (near the ends of their life) throw out a shell of dust. The result is a small, spherical shape, which looks like a planet (hence their name) (METU).

        Nebulae themselves are essentially formed by gas and dust particles clumping together by the attractive force of gravity. The clumps increase in density until they form areas where the density is great enough to form massive stars. These massive stars emit ultraviolet radiation, which ionizes surrounding gas and causes photon emissions, allowing us to see nebulae (like we discussed in the types of nebulae). Universe Today said, "Even though the interstellar gas is very dispersed, the amount of matter adds up over the vast distances between the stars. And eventually, and with enough gravitational attraction between clouds, this matter can coalesce and collapse to forms stars and planetary systems."

        Britannica notes the structure of nebulae in terms of density and chemical composition: "Various regions exhibit an enormous range of densities and temperatures. Within the Galaxy’s spiral arms about half the mass of the interstellar medium is concentrated in molecular clouds, in which hydrogen occurs in molecular form (H2) and temperatures are as low as 10 kelvins (K). These clouds are inconspicuous optically and are detected principally by their carbon monoxide (CO) emissions in the millimeter wavelength range. Their densities in the regions studied by CO emissions are typically 1,000 H2 molecules per cubic cm. At the other extreme is the gas between the clouds, with a temperature of 10 million K and a density of only 0.001 H+ ion per cubic cm." The composition of nebulae also aligns with what we see with the rest of the universe, mostly being made of hydrogen and the rest being other particles, particularly helium (this matches up with the composition of stars!).

        Fun-fact: supernova can create nebulae, but also destroy them. Possibly the most famous nebulae, the "Pillars of Creation," the Eagle Nebula, is hypothesized to have been destroyed by the shockwave of a supernova 6,000 years ago. Since it takes light 7,000 years to travel from that nebulae to the Earth, we won't know for another 1,000 years (Spitzer). If you're wondering how exactly we could know how far nebulae are, check out this article about a new way to measure that distance using the "surface brightness-radius relation", and other distance measurements (such as the parallax measurement).

        Now, why did I just explain the intricacies of nebulae in 900 words when this series is supposed to be about stars? Well, when we talk about the birth of a star (and the death sometimes, too), nebulae become important. Take note of what we've discussed in this article: formation, chemical composition, and density. It'll be important in our next chapter (and nuclear fusion, but when is that not important?).

First -  Chapter 1: An Introduction

Previous -  Chapter 2: Classification

Next -  Chapter 4: A Star is Born

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago
THE LIFE OF A STAR: CLASSIFICATION

THE LIFE OF A STAR: CLASSIFICATION

In order to understand the life of a star, we must understand star classification.

        And there are SO many different ways to classify a star.

        In star classification, understanding the relationship between color and temperature is crucial. The greater the temperature of the star, the bluer they are (at their hottest, around 50,000 degrees Celcius), while red stars are cooler (at their coolest, around 3,000 degrees Celcius). This occurs on a wide range (fun fact: stars only come in red, orange, yellow, white, and blue, because stars are approximately something called a "black body"). For example, our Sun is a yellow star with a surface temperature of 5,500 degrees Celcius (The Life of a Star).

        But why is this so? In order to understand that, I'm going to tell you about how stars live at all. This is what will determine the entire life of a star - something we'll be focusing on throughout this series. Two words: nuclear fusion.

        Nuclear fusion is "a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy." (Wikipedia) And this is where nuclear fusion gets REALLY important to stars. Throughout their lives, stars undergo nuclear fusion in their core. This is mostly in the form of fusing two or more hydrogen atoms into one or more helium atoms. This releases energy in the form of light (the pressure of nuclear fusion in the core also prevents the star from collapsing under the weight of gravity, something we'll get to later). The energy transports to the surface of the star and then radiates at an "effective temperature." (Britannica) 

        Stars are different colors due to differing amounts of energy. This is best explained by Einstein's e=mc2 or the mass-energy equivalence. In other words, the more mass something has, the more energy, and vice versa. Stars with greater mass undergo more nuclear fusion - and as such - emit more energy/temperature. And so, the bigger the star, the greater the temperature, the bluer the star; and the smaller the star, the lower the temperature, the redder the star (Universe Today). Another way to think about this is this: the hotter something is, the shorter frequency of energy it emits. Blue light has a shorter frequency than red light, and so, higher energy/temperature stars are bluer.

        Another important classification of a star is its luminosity (or the brightness, or the magnitude of the star). (The Life of a Star)

        The most famous diagram classifying stars is the Herzsprung Russell Diagram, shown in this article's picture. The x-axis of the diagram shows surface temperature, hottest left, and coolest right. The y-axis shows brightness, brighter higher, and dimmer lower. There are main groups on the diagram. 

        Most stars fall in a long band stretching diagonally, starting in the upper left corner and ending in the right lower corner, this is called the main sequence. The main sequence shows stars which mostly use their life going through nuclear fusion. This process takes up most of a star's life. Most stars which are hotter and more luminous fall in the upper left corner of the main sequence and are blue in color. Most stars that have lower-masses are cooler, and redder falls in the lower right. Yellow stars like our Sun fall in the middle. 

         The group located in the lower-left corner are smaller, fainter, and bluer (hotter) and are called White Dwarfs. These stars are a result of a star like our Sun one day running out of Hydrogen.

          The group located right above the righter's main sequence is larger, cooler, brighter, and a more orange-red or red, are called Red Giants. They are also part of the dying process of a star like our sun. Above them in the upper right corner are Red Super Giants, massive, bright, cooler, and much more luminous. To the left of the Red Super Giants are similar stars which are just hotter and bluer and are called the Blue Super Giants.

        That explains the most famous star classifying diagram. The important thing to remember is the data on the chart is not what a star will be like it's whole life. A star's position on the chart will change like our Sun will one day do.

        In a ThoughtCo. article on the Hertzsprung Russell Diagram, Carolyn Collins Petersen wrote: "One thing to keep in mind is that the H-R diagram is not an evolutionary chart. At its heart, the diagram is simply a chart of stellar characteristics at a given time in their lives (and when we observed them). It can show us what stellar type a star can become, but it doesn't necessarily predict the changes in a star." ( The Hertzsprung-Russell Diagram and the Lives of Stars)

        And this will continue to be important in the next chapters. Stars don't just stay in the same position their entire lives: they change in their color, luminosity, and temperature. In this series, we'll be tracking how stars form, live and die - all dependent on these three factors - and nuclear fusion - again - super important :)

Previous -  Chapter 1: An Introduction

Next -  Chapter 3: Star Nurseries

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago
INTRODUCTION TO THE LIFE OF A STAR

INTRODUCTION TO THE LIFE OF A STAR

The yellow dwarf of our Sun is around 4.5 billion years old (NASA).

   This is nothing compared to other stars, the oldest we know of was created 13.2 billion years ago (DISCOVERY OF THE 1523-0901).  Shortly before that, it is theorized the universe was a dense ball of super hot subatomic particles, until it wasn't. 

     For some reason, possibly the amounts of pressure or even the mysterious dark energy, the universe exploded into what it is today, forming crucial atoms and molecules, and continues to expand. These molecules formed clumps and clouds of gas, which eventually collapsed by gravity and created the very first stars. 

    Stars, particularly our Sun, are very important to life and affect the void of space to a great magnitude. They can tell us so much about the early universe, form elements from their deaths, and even create black holes. But how did this come to be?

     By definition, they are "huge celestial bodies made mostly of hydrogen and helium that produce light and heat from the churning nuclear forges inside their cores." (National Geographic) And there are TONS of them. There are stars everywhere we look. In fact, Astrophysicists aren't even sure how many stars there actually ARE in the universe (Space)! That's because they're not sure if the universe is infinite - in which the number of stars would also be infinite. Even so, we may not be able to detect them all, even if the number is finite.

     But they're so much more than a definition or a number. Stars aren't just objects: they're histories. Stars have a life, they are born, fuel themselves on nuclear fusion, and when they can no longer -  there are many ways their deaths can go (in brutal, yet tantalizing ways). They form solar systems, galaxies, galaxy clusters, and might just be the life-blood of the universe. Their light acts as beacons to scientists. Stars are so crucial to us, their deaths through Supernovas form most of the elements on the Periodic Table of the Elements.

    As the brilliant cosmologist, Carl Sagan, once said: "The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star-stuff."

    And if we're made of this stuff, shouldn't we at least try to understand what it actually does?

Next - Chapter 2: Classification

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags