This week, 10 things you need to know about this beautiful nighttime show and how to catch a front-row seat.
In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image Credit: NASA/Bill Ingalls
With very fast and bright meteors, Perseids (pronounced PURR-see-ids) frequently leave long "wakes" of light and color behind them as they streak through Earth's atmosphere. Perseids are one of the most plentiful showers, with between 50-100 meteors seen each hour, and occur with warm summer nighttime weather, allowing sky watchers to easily view them.
You can see the Perseids this year between now and Aug. 24, 2017, but mark your calendars for peak dates Aug. 12 and 13. This year, the waning gibbous moon rises about midnight local time, which will cut the expected rates in half this year (25 to 50 per hour at the peak from a very dark sky). But the Perseids are so bright and numerous that it should still be a good show.
The Perseids (and every meteor shower) are best viewed in the Northern Hemisphere between 11 p.m. - 3 a.m. Come prepared with a sleeping bag, blanket or lawn chair.
Find an area well away from city or street lights and set up where you're shadowed from the moon's glare. Face whatever direction you like, ideally the one unobstructed by trees, buildings or moonlight. Look up, taking in as much of the sky as possible. If you have a group, each person should look in different parts of the sky. After about 30 minutes in the dark, your eyes will adapt, and you'll begin to see fainter objects, including meteors. Be patient; the show will last until dawn, so you have plenty of time to catch a glimpse.
Pack a baseball cap and wear it sideways to cover any glare from the moon. The waning gibbous moon will block out many of the fainter meteors this year, but the Perseids are so bright and numerous that it should still be a good show.
Where do meteors come from? Some originate from leftover comet particles and bits of broken asteroids. When comets come around the sun, they leave a dusty trail behind them. Every year, Earth passes through these debris trails, which allows the bits to collide with our atmosphere and disintegrate to create fiery and colorful streaks in the sky. But the vast majority of meteors don't come from meteor showers—instead, they randomly fall all of the time.
The pieces of space debris that interact with our atmosphere to create the Perseids originate from Comet 109P/Swift-Tuttle. Swift-Tuttle takes 133 years to orbit the sun once, and Comet Swift-Tuttle last visited the inner solar system in 1992. Swift-Tuttle is a large comet: its nucleus is 16 miles (26 kilometers) across. This is almost twice the size of the object hypothesized to have wiped out the dinosaurs.
Comet Swift-Tuttle was discovered in 1862 by Lewis Swift and Horace Tuttle. In 1865, Giovanni Schiaparelli realized that this comet was the source of the Perseids.
The Perseids are known for fireballs, which are large explosions of light and color that last longer than an average meteor streak. Why? They originate from bigger particles of cometary material.
The point in the sky from which the Perseids appear to come from—also known as their radiant—is the constellation Perseus. But don't get confused: The constellation name only helps viewers figure out which shower they're viewing on a given night; it's not the source of the meteors (see #6 for that answer!).
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Along this path, the Moon will completely cover the Sun, revealing the Sun’s tenuous atmosphere, the corona. The path of totality will stretch from Salem, Oregon, to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse, where the Moon covers part of the Sun’s disk. Remember: you can never look at the Sun directly, and an eclipse is no exception – be sure to use a solar filter or indirect viewing method to watch partial phases of the eclipse.
Total solar eclipses are a rare chance to study the Sun and Earth in unique ways. During the total eclipse, scientists can observe the faintest regions of the Sun, as well as study the Sun’s effects on Earth’s upper atmosphere. We’ve been using eclipses to learn more about our solar system for more than 50 years. Let’s take a look back at five notable eclipses of the past five decades.
A total eclipse crossed the Pacific Ocean on May 30, 1965, starting near the northern tip of New Zealand and ending in Peru. Totality – when the Moon blocks all of the Sun’s face – lasted for 5 minutes and 15 seconds at peak, making this the 3rd-longest solar eclipse totality in the 20th century. Mexico and parts of the Southwestern United States saw a partial solar eclipse, meaning the Moon only blocked part of the Sun. We sent scientists to the path of totality, stationing researchers on South Pacific islands to study the response of the upper atmosphere and ionosphere to the eclipse.
Additionally, our high-flying jets, scientific balloons, and sounding rockets – suborbital research rockets that fly and collect data for only a few minutes – recorded data in different parts of the atmosphere. A Convair 990 research jet chased the Moon’s shadow as it crossed Earth’s surface, extending totality up to more than nine minutes, and giving scientists aboard more time to collect data. A NASA-funded team of researchers will use the same tactic with two jets to extend totality to more than 7 minutes on Aug. 21, 2017, up from the 2 minutes and 40 seconds observable on the ground.
The total solar eclipse of March 7, 1970, was visible in North America and the northwestern part of South America, with totality stretching to 3 minutes and 28 seconds at maximum. This was the first time a total eclipse in the United States passed over a permanent rocket launch facility – NASA’s Wallops Station (now Wallops Flight Facility) on the coast of Virginia. This eclipse offered scientists from NASA, four universities and seven other research organizations a unique way to conduct meteorology, ionospheric and solar physics experiments using 32 sounding rockets.
Also during this eclipse, the Space Electric Propulsion Test, or SERT, mission temporarily shut down because of the lack of sunlight. The experimental spacecraft was unable to restart for two days.
Two years later, North America saw another total solar eclipse. This time, totality lasted 2 minutes and 36 seconds at the longest. A pair of scientists from Marshall Space Flight Center in Huntsville, Alabama, traveled to the Canadian tundra to study the eclipse – specifically, a phenomenon called shadow bands. These are among the most ephemeral phenomena that observers see during the few minutes before and after a total solar eclipse. They appear as a multitude of faint rapidly moving bands that can be seen against a white background, such as a large piece of paper on the ground.
While the details of what causes the bands are not completely understood, the simplest explanation is that they arise from atmospheric turbulence. When light rays pass through eddies in the atmosphere, they are refracted, creating shadow bands.
The last total solar eclipse of the 20th century in the contiguous United States was in early 1979. Totality lasted for a maximum of 2 minutes 49 seconds, and the total eclipse was visible on a narrow path stretching from the Pacific Northwest to Greenland. Agencies from Canada and the United States – including NASA – joined forces to build a sounding rocket program to study the atmosphere and ionosphere during the eclipse by observing particles on the edge of space as the Sun’s radiation was suddenly blocked.
The USSR got a great view of the Moon passing in front of the Sun in the summer of 1981, with totality lasting just over 2 minutes at maximum. Our scientists partnered with Hawaiian and British researchers to study the Sun’s atmosphere – specifically, a relatively thin region called the chromosphere, which is sandwiched between the Sun’s visible surface and the corona – using an infrared telescope aboard the Kuiper Airborne Observatory. The chromosphere appears as the red rim of the solar disk during a total solar eclipse, whereas the corona has no discernible color to the naked eye.
On August 21, a total solar eclipse will cross the continental United States from coast to coast for the first time in 99 years, and you can watch.
If skies are clear, people in North America will be able to see a partial or total solar eclipse. Find out what the eclipse will look like in your area, then make sure you have a safe method to watch – like solar viewing glasses or a pinhole projector – and head outside.
You can also tune into nasa.gov/eclipselive throughout the day on Aug. 21 to see the eclipse like you’ve never seen it before – including a NASA TV show, views from our spacecraft, aircraft, and more than 50 high-altitude balloons.
Get all your eclipse information at https://eclipse2017.nasa.gov/, and follow along with @NASASun on Twitter and NASA Sun Science on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Water is a precious resource -- especially on the Moon! In the near future, robotic rovers may roam the Moon’s poles in search of hidden reservoirs of water beneath the lunar surface. But traversing the poles can be a perilous journey. Depending on the Sun’s position in the sky and the way that its light falls on the surface, hazards such as boulders and craters can be difficult, if not impossible, to see.
Inside our Lunar Lab at Ames Research Center, researchers are using Hollywood light kits and a giant sandbox filled with 8 tons of artificial Moon dirt to simulate driving conditions at the poles. The research aims to provide rovers and their human supervisors with 3-D hazard maps of the Moon’s terrain, helping them to avoid potential obstacles that lie ahead.
Researchers begin with a map of the Moon’s terrain that’s randomly generated by a computer. Each scene is based on observations made from lunar orbit. The map indicates the number, location and size of features like rocks and craters that should be placed inside the 12x12-foot testbed.
Using the map as a guide, researchers build the terrain by hand with everyday tools. The terrain is then dusted with a top layer of artificial Moon dirt to eliminate shovel and brush marks.
Lights are positioned at different locations around the testbed. One by one, the lights are switched on and off while a camera captures images of the terrain. Notice how the appearance of the terrain changes depending on the source of illumination.
Using a computer algorithm, a 3-D hazard detection model of the terrain is generated from the images. The model provides important information about the size of an obstacle, its height and where it’s located.
With this technique, researchers can teach a rover to recognize the effect of different lighting conditions on the Moon’s poles. The tool could come in handy for future lunar rover missions like Resource Prospector, which will use a drill to search for subsurface water and other compounds on the Moon.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Solar eclipses occur when the new moon passes between the Earth and the sun and moon casts a traveling shadow on Earth. A total solar eclipse occurs when the new moon is in just the right position to completely cover the sun’s disk.
This will happen next month on August 21, when the new month completely blocks our view of the sun along a narrow path from Oregon to South Carolina.
It may even be dark enough during the eclipse to see some of the brighter stars and few planets!
Two weeks before or after a solar eclipse, there is often, but not always, a lunar eclipse. This happens because the full moon, the Earth and the sun will be lined up with Earth in the middle.
Beginning July 1, we can see all the moon’s phases.
Many of the Apollo landing sites are on the lit side of the first quarter moon. But to see these sites, you’ll have to rely on images for lunar orbiting spacecraft.
On July 9, the full moon rises at sunset and July 16 is the last quarter. The new moon begins on July 23 and is the phase we’ll look forward to in August, when it will give us the total solar eclipse. The month of July ends with a first quarter moon.
We’ll also have two meteor showers, both of which peak on July 30. The Delta Aquarids will have 25 meteors per hour between midnight and dawn.
The nearby slow and bright Alpha Capricornids per at 5 per hour and often produce fireballs.
Watch the full video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just two months from now, the moon will completely block the sun’s face, treating part of the US to a total solar eclipse.
Everyone in North America will have the chance to see an eclipse of some kind if skies are clear. Anyone within a 70-mile-wide swath of land — called the path of totality — that stretches from Oregon to South Carolina will have the chance to see a total eclipse.
Throughout the rest of the continent, including all 50 United States — and even in parts of South America, Africa, Europe, and Asia — the moon will partially obscure the sun, creating a partial eclipse.
Photo credit: NASA/Cruikshank
An eclipse is one of nature’s most awesome sights, but safety comes first! When any part of the sun’s surface is exposed, use proper eclipse glasses (not sunglasses) or an indirect viewing method, like a pinhole projector. In the path of totality, it’s safe to look directly at the eclipse ONLY during the brief moments of totality.
During a solar eclipse, the moon passes between the sun and Earth, casting a shadow down on Earth’s surface. We’ve been studying the moon with NASA’s Lunar Reconnaissance Orbiter, and its precise mapping helped NASA build the most accurate eclipse map to date.
During a total solar eclipse, the moon blocks out the sun’s bright face, revealing the otherwise hidden solar atmosphere, called the corona. The corona is one of the sun’s most interesting regions — key to understanding the root of space weather events that shape Earth’s space environment, and mysteries such as why the sun’s atmosphere is so much hotter than its surface far below.
This is the first time in nearly 100 years that a solar eclipse has crossed the United States from coast to coast. We’re taking advantage of this long eclipse path by collecting data that’s not usually accessible — including studying the solar corona, testing new corona-observing instruments, and tracking how our planet’s atmosphere, plants, and animals respond to the sudden loss of light and heat from the sun.
We’ll be studying the eclipse from the ground, from airplanes, with research balloons, and of course, from space.
Three of our sun-watchers — the Solar Dynamics Observatory, IRIS, and Hinode, a joint mission led by JAXA — will see a partial eclipse from space. Several of our Earth-observing satellites will use the eclipse to study Earth under uncommon conditions. For example, both Terra and DSCOVR, a joint mission led by NOAA, will capture images of the moon’s shadow from space. Our Lunar Reconnaissance Orbiter will also turn its instruments to face Earth and attempt to track the moon’s shadow as it moves across the planet.
There’s just two months to go until August 21, so make your plans now for the big day! No matter where you are, you can follow the eclipse as it crosses the country with live footage from NASA TV.
Learn more about the upcoming total solar eclipse — including where, when, and how to safely experience it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As our Cassini spacecraft made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. Credits: NASA/JPL-Caltech/Space Science Institute/Hampton University
Our Cassini spacecraft has begun its final mission at Saturn. Some dates to note:
May 28, 2017: Cassini makes its riskiest ring crossing as it ventures deeper into Saturn's innermost ring (D ring).
June 29, 2017: On this day in 2004, the Cassini orbiter and its travel companion the European Space Agency's Huygens probe arrived at Saturn.
September 15, 2017: In a final, spectacular dive, Cassini will plunge into Saturn - beaming science data about Saturn's atmosphere back to Earth to the last second. It's all over at 5:08 a.m. PDT.
More about the Grand Finale
June 1, 2017: Target date of the cargo launch. The uncrewed Dragon spacecraft will launch on a Falcon 9 from Launch Complex 39A at our Kennedy Space Center in Florida. The payload includes NICER, an instrument to measure neutron stars, and ROSA, a Roll-Out Solar Array that will test a new solar panel that rolls open in space like a party favor.
More
July 4, 2017: Twenty years ago, a wagon-sized rover named Sojourner blazed the trail for future Mars explorers - both robots and, one day, humans. Take a trip back in time to the vintage Mars Pathfinder websites:
More
August 20, 2017: Forty years and still going strong, our twin Voyagers mark 40 years since they left Earth.
More
August 21, 2017: All of North America will be treated to a rare celestial event: a total solar eclipse. The path of totality runs from Oregon to South Carolina.
More
Light a candle for the man who took rocketry from science fiction to science fact. On this day in 1882, Robert H. Goddard was born in Worcester, Massachusetts.
More
October 28, 2017: Howl (or look) at the moon with the rest of the world. It's time for the annual International Observe the Moon Night.
More
December 13, 2017: Forty-five years ago, Apollo 17 astronaut Gene Cernan left the last human footprint on the moon.
More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Saturn's hazy moon Titan is larger than Mercury, but its size is not the only way it's like a planet. Titan has a thick atmosphere, complete with its own "water cycle" -- except that it's way too cold on Titan for liquid water. Instead, rains of liquid hydrocarbons like ethane and methane fall onto icy mountains, run into rivers, and gather into great seas. Our Cassini spacecraft mapped the methane seas with radar, and its cameras even caught a glimpse of sunlight reflecting off the seas' surface. Learn more about Titan: saturn.jpl.nasa.gov/science/titan/
Jupiter's moon Ganymede is the largest in the solar system. It's bigger than Mercury and Pluto, and three-quarters the size of Mars. It's also the only moon known to have its own magnetic field. Details: solarsystem.nasa.gov/planets/ganymede/indepth
Triton is Neptune's largest moon, and the only one in the solar system to orbit in the opposite direction of its planet's rotation, a retrograde orbit. It may have been captured from the Kuiper Belt, where Pluto orbits. Despite the frigid temperatures there, Triton has cryovolcanic activity -- frozen nitrogen sometimes sublimates directly to gas and erupts from geysers on the surface. More on Triton: solarsystem.nasa.gov/planets/triton/indepth
The most famous geysers in our solar system (outside of those on Earth) belong to Saturn's moon Enceladus. It's a small, icy body, but Cassini revealed this world to be one of the solar system's most scientifically interesting destinations. Geyser-like jets spew water vapor and ice particles from an underground ocean beneath the icy crust of Enceladus. With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist. Get the details: saturn.jpl.nasa.gov/science/enceladus/
Jupiter's moon Io is subjected to tremendous gravitational forces that cause its surface to bulge up and down by as much as 330 feet (100 m). The result? Io is the most volcanically active body in the Solar System, with hundreds of volcanoes, some erupting lava fountains dozens of miles high. More on Io’s volcanoes: solarsystem.nasa.gov/planets/io/indepth
When Giovanni Cassini discovered Iapetus in 1671, he observed that one side of this moon of Saturn was bright and the other dark. He noted that he could only see Iapetus on the west side of Saturn, and correctly concluded that Iapetus had one side much darker than the other side. Why? Three centuries later, the Cassini spacecraft solved the puzzle. Dark, reddish dust in Iapetus's orbital path is swept up and lands on the leading face of the moon. The dark areas absorb energy and become warmer, while uncontaminated areas remain cooler. Learn more: saturn.jpl.nasa.gov/news/2892/cassini-10-years-at-saturn-top-10-discoveries/#nine
At half the size of Pluto, Charon is the largest of Pluto's moons and the largest known satellite relative to its parent body. The moon is so big compared to Pluto that Pluto and Charon are sometimes referred to as a double planet system. Charon's orbit around Pluto takes 6.4 Earth days, and one Pluto rotation (a Pluto day) takes 6.4 Earth days. So from Pluto's point of view Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto. Get the details: www.nasa.gov/feature/pluto-and-charon-new-horizons-dynamic-duo
Saturn's moon Mimas has one feature that draws more attention than any other: the crater Herschel, which formed in an impact that nearly shattered the little world. Herschel gives Mimas a distinctive look that prompts an oft-repeated joke. But, yes, it's a moon. More: olarsystem.nasa.gov/planets/mimas
In mythology, Mars is a the god of war, so it's fitting that its two small moons are called Phobos, "fear," and Deimos, "terror." Our Mars Reconnaissance Orbiter caught this look at Phobos, which is roughly 17 miles (27 km) wide. In recent years, NASA scientists have come to think that Phobos will be torn apart by its host planet's gravity. Details: www.nasa.gov/feature/goddard/phobos-is-falling-apart
Learn more about Phobos: solarsystem.nasa.gov/planets/phobos/indepth
Although decades have passed since astronauts last set foot on its surface, Earth's moon is far from abandoned. Several robotic missions have continued the exploration. For example, this stunning view of the moon's famous Tycho crater was captured by our Lunar Reconnaissance Orbiter, which continues to map the surface in fine detail today. More: www.lroc.asu.edu/posts/902
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Jupiter climbs higher in the southeast sky earlier in the evening this month, instead of having to wait until midnight for the planet to make an appearance. You can even see with just a pair of binoculars--even the four Galilean moon!
You can even see with just a pair of binoculars--even Io, Europa, Ganymede and Callisto--the four Galilean moons--as they change position each night!
Our moon appears near Jupiter in the nighttime sky from May 5-8.
The moon joins Venus and Mercury in the eastern sky just before sunrise on May 22 and May 23.
Later in the month, our moon pairs up with Mars in the west-northwest sky on May 26.
Saturn will be visible before midnight in early May, rising about 11:30 p.m. and by 9:30 p.m. later in the month. The best time to see Saturn Saturn is when it’s higher in the sky after midnight near the end of the month.
Using a telescope, you may be able to see Saturn’s cloud bands, or even a glimpse of Saturn’s north polar region--views that were beautifully captured by our Cassini spacecraft.
For the first time ever, our Cassini spacecraft dove through the narrow gap between Saturn and its rings on April 26. At 5 a.m. EDT, Cassini crossed the ring plane with its science instruments turned on and collecting data.
During this dive, the spacecraft was not in contact with Earth. The first opportunity to regain contact with the spacecraft is expected around 3 a.m. EDT on April 27.
This area between Saturn and its rings has never been explored by a spacecraft before. What we learn from these daring final orbits will further our understanding of how giant planets, and planetary systems everywhere, form and evolve.
So, you might be asking…how did this spacecraft maneuver its orbit between Saturn and its rings? Well…let us explain!
On April 22, Cassini made its 127th and final close approach to Saturn’s moon Titan. The flyby put the spacecraft on course for its dramatic last act, known as the Grand Finale.
As the spacecraft passed over Titan, the moon’s gravity bent its path, reshaping the robotic probe’s orbit slightly so that instead of passing just outside Saturn’s main rings, Cassini would begin a series of 22 dives between the rings and the planet.
With this assist, Cassini received a large increase in velocity of approximately 1,925 mph with respect to Saturn.
This final chapter of exploration and discovery is in many ways like a brand-new mission. Twenty-two times, the Cassini spacecraft will dive through the unexplored space between Saturn and its rings. What we learn from these ultra-close passes over the planet could be some of the most exciting revelations ever returned by the long-lived spacecraft.
Throughout these daring maneuvers, updates will be posted on social media at:
@CassiniSaturn on Twitter @NASAJPL on Twitter
Updates will also be available online at: https://saturn.jpl.nasa.gov/mission/grand-finale/milestones/
Follow along with us during this mission’s Grand Finale!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On December 17, 1972, the crew of Apollo 17 snapped this iconic image of planet Earth. Dubbed the Blue Marble, this image was taken as Apollo 17 rocketed toward the moon.
On the way to the moon or from the surface of Mars, our spacecraft have photographed the beauty of Earth from many vantage points. In this image, the most powerful telescope orbiting Mars captured this view of Earth and its moon, showing continent-size detail on the planet and the relative size of the moon. The image combines two separate exposures taken on November 20, 2016, by the High Resolution Imaging Science Experiment (HiRISE) camera on our Mars Reconnaissance Orbiter.
In this image taken on July 19, 2013, the wide-angle camera on our Cassini spacecraft captured Saturn's rings and our planet Earth and its moon in the same frame.
Our Suomi-NPP satellite also observed the Earth at night. Earth’s "night lights" often have a gee-whiz curiosity for the public , but have also served as a tool for fundamental research for nearly 25 years. They have provided a broad, beautiful picture, showing how humans have shaped the planet and lit up the darkness.
You can be mesmerized by the constant swirls in these visualizations of ocean currents. The swirling flows of tens of thousands of ocean currents were captured using the largest computations of their kind ever undertaken, using high-end computing resources at our Ames Research Center.
We’ve all seen iconic photographs of Earth shot by astronauts. But even satellites and robotic spacecraft often get in on the act. The above image, called “Pale Blue Dot,” was taken Voyager 1 in February 1990 from a distance of 4 billion miles.
Our satellites do more than take pretty pictures of Earth. They do everything from measure rainfall to observe weather patterns. The ten satellites in the Global Precipitation Measurement Constellation have provided unprecedented information about rain and snow fall across the entire Earth. This visualization shows the constellation in action, taking precipitation measurements underneath the satellite orbits.
In an homage to Apollo 17′s “Blue Marble” image, Suomi-NPP, a joint NASA-NOAA Earth-observing satellite, made this composite image, by making a number of swaths of Earth's surface on January 4, 2012.
What’s your favorite aspect of planet Earth? These kids have their own ideas. You can even “adopt” parts of the planet. Which one of the 64,000 locations will you get?
Our home planet is constantly changing, which is why our fleet of Earth-observing satellites continuously monitor the globe, recording every moment of what they see. Luckily for us, many of the views are not only deeply informative but also awe-inspiring.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On March 4 the first quarter moon passes between Earth and the star Aldebaran, temporarily blocking our view of the star. This is called an occultation.
The occultation begins and concludes at different times, depending on where you are when you view it.
The event should be easy to see from most of the U.S., Mexico, most of Central America, the Western Caribbean and Bermuda.
Observers along a narrow path from Vancouver, British Columbia, to Hartford, Connecticut, will see the moon “graze” the star. The star will disappear and reappear repeatedly as hills and valleys on the moon alternately obscure and reveal it.
As seen from Earth, both Mercury and Venus have phases like our moon. That’s because they circle the sun inside Earth’s orbit.
Planets that orbit between Earth and the sun are known as inner or inferior planets.
Inferior planets can never be at “opposition,” which is when the planet and the sun are on opposite sides of Earth.
But inferior planets can be at “conjunction,” which is when a planet, the sun and Earth are all in a straight line.
Conjunction can happen once when the planet is on the opposite side of the sun from Earth and again when it’s on the same side of the sun as Earth.
When a planet is on the opposite side of the sun from Earth, we say it is at “superior conjunction.” As the planet moves out from behind the sun and gets closer to Earth, we see less and less of the lit side. We see phases, similar to our moon’s phases.
Mercury is at superior conjunction on March 6.
A few weeks later, the planet emerges from behind the sun and we can once again observe it. By the end of March we’ll see a last-quarter Mercury.
On April 20 Mercury reaches “inferior conjunction.”
Brilliant Venus is also racing toward its own inferior conjunction on March 25. Watch its crescent get thinner and thinner as the planet’s size appears larger and larger, because it is getting closer to Earth.
Finally, look for Jupiter to rise in the East. It will be visible all month long from late evening until dawn.
You can catch up on solar system missions and all of our missions at www.nasa.gov
Watch the full “What’s Up for March 2017″ video here:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today’s (Feb. 10) lunar activity comes in the form of a penumbral eclipse. What does that mean and how does this type differ from a total eclipse? Let’s take a look:
First off, what is a penumbra? During a lunar eclipse, two shadows are cast by the Earth. The first is called the umbra (UM bruh). This shadow gets smaller as it goes away from the Earth. It is the dark center of the eclipse shadow where the moon is completely in the shadow of the Earth.
The second shadow is called the penumbra (pe NUM bruh). The penumbra gets larger as it goes away from the Earth. The penumbra is the weak or pale part of the shadow. This occurs because the Earth is covering a portion of the sun.
Penumbral eclipses occur when only the outer shadow (the penumbra) of Earth falls on the moon’s surface. This type of eclipse is much more difficult to observe than total eclipses or when a portion of the moon passes into the umbra. That said, if you’re very observant, you may notice a dark shadow on the moon during mid-eclipse on Friday evening. You may not notice anything at all. It’s likely the moon will just look at little bit darker than normal…like this:
Earth’s penumbral shadow forms a diverging cone that expands into space in the opposite direction of the sun. From within this zone, Earth blocks part but not the entire disk of the sun. Thus, some fraction of the sun’s direct rays continues to reach the most deeply eclipsed parts of the moon during a penumbral eclipse.
For most of North America, the penumbral eclipse will begin at moonrise (sunset) on Friday, Feb. 10 and will be obscured by evening light. Here’s a guide of when to look up:
Fun fact: Aristotle (384 – 322 BCE) first proved that Earth was round using the curved umbral shadow seen at partial eclipses. In comparing observations of several eclipses, he noted that Earth’s shadow was round no matter where the eclipse took place. Aristotle correctly reasoned that only a sphere casts a round shadow from every angle.
To learn more about lunar eclipses, visit: https://svs.gsfc.nasa.gov/11828
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The powerful HiRISE camera on the Mars Reconnaissance Orbiter took this incredible image of our home and moon. The image combines two separate exposures taken on Nov. 20, 2016.
+ See more
We’ve selected two new missions to explore the early solar system. Lucy, a robotic spacecraft scheduled to launch in October 2021, is slated to arrive at its first destination, a main belt asteroid, in 2025. From 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter's gravity in two swarms that share the planet's orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun.
+Learn more
Psyche, targeted to launch in October 2023, will explore one of the most intriguing targets in the main asteroid belt--a giant metal asteroid, known as 16 Psyche. The asteroid is about 130 miles (210 kilometers) in diameter and thought to be comprised mostly of iron and nickel, similar to Earth's core.
+ Details
Cassini took so many jaw-dropping photos last year, how could anyone choose just 10? Well, the Cassini team didn't. Here are 17 amazing photos from Saturn and its moons last year.
Impact craters have exposed the subsurface materials on the steep slopes of Mars. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image from our Mars Reconnaissance Orbiter, representing different rock types.
+ Learn more
Even though our New Horizons mission flew by Pluto in 2015, the scientific discoveries keep coming. Using a model similar to what meteorologists use to forecast weather and a computer simulation of the physics of evaporating ices, scientists have found evidence of snow and ice features that, until now, had only been seen on Earth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What’s Up for December? Mars and Neptune above the crescent moon and a New Year’s Eve comet!
2016 ends with fireworks as three planets line up as if ejected from a Roman candle. Mercury, Venus and Mars are visible above the sunset horizon all month long.
As Venus climbs higher in the sky, it looks brighter and larger than it appeared last month.
On New Year’s Eve, Mars and Neptune appear very close to each other. Through telescopes, rusty red Mars and blue-green Neptune‘s colors contrast beautifully.
There are two meteor showers this month – the Geminds and the Ursids. The best time to see the reliable Geminids will be next year, when the full moon won’t be so bright and interfering. This year, however, we may luck out and see some of the brighter meteors on the evening of the 13th and the morning of the 14th.
The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on the 21st until about 1 a.m. on the 22nd, before the moon rises. They may be active on the 23rd and 24th, too.
We haven’t had a good easy-to-see comet in quite a while, but beginning in December and through most of 2017 we will have several binocular and telescopic comets to view.
The first we’ll be able to see is Comet 45P/Honda-Mrkos-Pajdušáková, which will appear low on the western horizon on December 15th. On that date, the comet will pass the pretty globular cluster M75.
By the 21st, it will appear edge-on, sporting a bluish-green head and a thin, sharp view of the fan-shaped tail.
On New Years Eve, the comet and the crescent moon will rendezvous to say farewell to 2016. A “periodic” comet is a previously-identified comet that’s on a return visit. Periodic comet 45P returns to the inner solar system every 5.25 years, and that’s the one that will help us ring in the new year.
Watch the full What’s Up for December video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Wouldn’t it be neat to see a period of the universe’s history that we’ve never seen before? That’s exactly what the James Webb Space Telescope (JWST) will be able to do…plus more!
Specifically, Webb will see the first objects that formed as the universe cooled down after the Big Bang. We don’t know exactly when the universe made the first stars and galaxies – or how for that matter. That is what we are building Webb to help answer.
1. The James Webb Space Telescope is the world’s largest and next premier space observatory. It will extend the discoveries of the Hubble Space telescope and observe the birthplaces of stars, galaxies, planets and life over billions of years.
2. It is named after James Webb, NASA’s second administrator and champion of our science.
3. At 3 stories high and the size of a tennis court, it will be 100 times more powerful than Hubble!
4. It is so big that it has to fold origami-style to fit in the rocket, which is only 5.4 meters wide...And then it will unfurl, segment by segment, once in space.
5. The telescope will observe infrared light with unprecedented sensitivity. It will see the first galaxies born after the Big Bang over 13.5 billion years ago.
6. Webb's infrared cameras are so sensitive they must be shielded from light from the sun, Earth, and moon. The 5-layer sunshield is like having sunblock of SPF 1 million.
7. Webb will orbit the sun 1 million miles from Earth, where the telescope will operate at temperatures below -390 F (-235 C).
8. Webb’s mirrors are coated with a super thin layer of gold only about 1000 atoms thick to optimize their reflectivity in the infrared.
9. Webb will launch from French Guiana in 2018. It is launched near the equator because the faster spin of Earth there gives the rocket an extra push.
10. Webb is an international mission, with contributions from the European Space Agency and Canadian Space Agency. Once operational, scientists from all over the world will be able to use Webb to explore our solar system, planets outside our solar system, stars and galaxies.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Through November 3, catch glimpses of a gibbous Venus, a crescent moon and ringed Saturn in the southwest sky just after sunset.
Wake up before sunrise every day this month to see Jupiter just above Spica, the brightest star in the constellation Virgo, shining in the east-southeast sky.
Just before dawn on November 23-24, see the waning crescent moon just above Jupiter.
November is a great time to see the constellation Ceres as it glides past Cetus, the Whale and you will be able to see the dwarf planet move relative to the background stars, but you’ll need a telescope for this one.
This month, just like last month, there will be three meteor showers--the Northern Tuarids, the Leonids and the November Orionids.
Watch the full November “What’s Up" video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The fifth International Cosmic Day will take place on Nov. 2. This event will bring students, teachers and scientists together to talk and learn about cosmic rays, energetic particles from deep space. Participants will learn more about cosmic rays, and can also carry out their own measurements and get in contact with groups all over the world to compare and discuss their results.
+ Join in
The number of near-Earth asteroids (NEAs) discovered now tops 15,000, with an average of 30 added each week. "While no known NEA currently poses a risk of impact with Earth over the next 100 years," says NASA Planetary Defense Officer Lindley Johnson. "We've found mostly the larger asteroids...we have a lot more of the smaller, but still potentially hazardous ones, to find."
+ Find out how we keep watch
The moon wasn't always so lucky when it came to avoiding impacts. New results from our Gravity Recovery and Interior Laboratory (GRAIL) mission are providing insights into the huge impacts that dominated the early history of Earth's moon--and other solid worlds like Earth and Mars.
+ See more
Our Cassini spacecraft regularly returns spectacular images from Saturn. What you may not realize is that even before they've been processed by Cassini imaging specialists, these pictures are published online in raw, unprocessed form, almost the moment they come down to Earth.
+ See for yourself
On Oct. 30, 2016, the Solar Dynamics Observatory, or SDO, experienced a partial solar eclipse in space when it caught the moon passing in front of the sun. The lunar transit lasted an hour, with the moon covering about 59 percent of the sun at the peak of its journey across the face of the sun. The moon's shadow occasionally obstructs SDO's otherwise constant view of the sun. The shadow's edge is sharp and distinct, since the moon has no atmosphere that would distort sunlight.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Humanity has observed the nighttime sky for millennia, eyeing celestial bodies with wonder. Until the last 50 years or so, telescopes provided our best views of the sky at night. That is, until the Ranger mission broadcast the craft’s descent onto the moon live on March 24, 1965.
+Learn more about Ranger 9
+Watch the video
Our fascination with the moon continues, and since 2010 the organizers of International Observe the Moon Night (InOMN) have turned it into a worldwide, public celebration of lunar science and exploration held annually. One day each year, they invite everyone, everywhere to learn about the moon and to celebrate the cultural and personal connections. We’ll all invited and anyone can host an InOMN event.
+Locations of InOMN Events Around the World
+ Visit International Observe the Moon Night’s site
And, we’re doing our part to let the public know more about our moon. This month’s "What's up" video is very moon-centric.
+View JPL’s What’s Up for October
Our Night Sky Network at JPL, which bills itself as “astronomy clubs bringing the wonders of the universe to the public,” has a list of astronomy clubs and events across by area, as well as a monthly calendar.
+Learn more
Organizations in our Museum Alliance across the country are also hosting activities. The Museum Alliance was created to be the "front door" to NASA for the world of informal education. The Alliance is a NASA-centric STEAM "community of practice" that includes informal educational organizations, namely, all those outside of the traditional K-12 school system. Our STEAM--Science, Technology, Engineering, Art, and Math--communities include more than 1,400 professionals at more than 700 U.S. museums, science centers, planetariums, NASA Visitor Centers, Challenger Centers, observatories, parks, libraries, camps, and youth-serving organizations as partners in the Museum Alliance.
+Learn more about the Museum Alliance
All us Earth-dwellers can tour the moon via our Moon Tours app that lets you explore the lunar surface from your mobile device. The app includes imagery from lunar orbiters and Apollo missions and is a free download for iOS and Android.
+iOS
+Android
+Check out a full range of NASA apps
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. Rosetta’s Last Dance
The Rosetta mission was one of firsts: the first to orbit a comet and the first to dispatch a lander to a comet's surface. Rosetta transformed our understanding of these ancient wanderers, and this week, mission controllers will command the spacecraft to execute a series of maneuvers to bring it out of orbit around Comet 67P/Churyumov-Gerasimenko. Watch live on Sept. 30 from 6:15-8 a.m. EDT, the Rosetta mission's 12-year odyssey in space reaches its conclusion. Rosetta will descend to make a planned impact on the comet’s surface with its instruments recording science data during descent.
+Watch live as Rosetta crash lands on NASA TV, recording data along the way
+More on the mission’s final descent
+Mission highlights
2. Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa
On Monday, Sept. 26, our scientists announced what may be water vapor plumes erupting off the surface of Jupiter's moon Europa, based on data from the Hubble Space Telescope. This finding bolsters other Hubble observations suggesting the icy moon erupts with high altitude water vapor plumes.
+Learn the latest on Europa
3. Not So Impossible After All
Scientists have found an "impossible" ice cloud on Saturn's moon Titan. The puzzling appearance of an ice cloud prompted our researchers to suggest that a different process than previously thought could be forming clouds on Titan. The process may be similar to one seen over Earth's poles. Today, the Cassini spacecraft will perform a targeted Titan flyby, skimming just 1,079 miles (1,736 kilometers) above its hazy surface. Several of Cassini's instruments will be watching for clouds and other phenomena in the atmosphere, as well as taking measurements of the surface.
+Learn more about Titan’s clouds
4. Lunar Intrigue
Earth's moon is a colorless world of grays and whites, right? Not really. As seen in these images from the Lunar Reconnaissance Orbiter, some landscapes on the moon reveal a whole range of color. One such place is the mountainous complex of ancient lava flows known as the Lassell Massif, one of the moon's so-called "red spots."
+Take a look
5. Weather Report: Mars
A camera aboard our Mars Reconnaissance Orbiter monitors global weather patterns daily. The most recent report includes the remains of a large dust storm in the Noachis region, and smaller tempests spotted along the edge of the south polar ice cap and water-ice clouds over the volcano Arsia Mons.
+ Learn more and see Mars weather videos
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We won’t have a solar eclipse until Aug. 21, 2017, but observers in central Africa will see an annular eclipse, where the moon covers most but not all of the sun, on Sept. 1. Observers always need to use safe solar eclipse glasses or filters on telescopes, binoculars and cameras.
Also this month, there are two minor meteor showers, both with about 5 swift and bright meteors per hour at their peak, which will be near dawn. The first is the Aurigid shower on Sept. 1. The new moon on the first means the sky will be nice and dark for the Aurigids.
The second shower is the Epsilon Perseids on Sept. 9. The first quarter moon sets on the 9th at midnight, just in time for the best viewing of the Perseids.
There are many nice pair-ups between the moon and planets this month. You can see the moon between Venus and Jupiter on Sept. 2, and above Venus on the 3rd, right after sunset low on the West-Southwest horizon. On the 15th the nearly full moon pairs up with Neptune, two weeks after its opposition, when the 8th planet is closest to Earth in its orbit around the sun.
Watch the full September “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our solar system is huge, let us break it down for you. Here are a few things you should know this week:
1. Closeup of a King
For the first time since it entered orbit around Jupiter in July, our Juno spacecraft has flown close to the king of planets—this time with its eyes wide open. During the long, initial orbit, Juno mission managers spent time checking out the spacecraft "from stem to stern," but the science instruments were turned off as a precaution. During this latest pass, Juno's camera and other instruments were collecting data the whole time. Initial reports show that all went well, and the team has released a new close-up view that Juno captured of Jupiter's north polar region. We can expect to see more close-up pictures of Jupiter and other data this week.
+Check in with Juno
2. Getting Ready to Rocket
Our OSIRIS-REx mission leaves Earth next week, the first leg of a journey that will take it out to an asteroid called Bennu. The mission will map the asteroid, study its properties in detail, then collect a physical sample to send back home to Earth. The ambitious endeavor is slated to start off on Sept. 8.
+See what it takes to prep for a deep space launch
3. New Moon Rising
The Lunar Reconnaissance Orbiter (LRO) has already mapped the entire surface of Earth's moon in brilliant detail, but the mission isn't over yet. Lunar explorers still have questions, and LRO is poised to help answer them.
+See what’s next for the mission
4. A Mock-Eclipse Now
We don't have to wait until next year to see the moon cross in front of the sun. From its vantage point in deep space, our Solar Dynamics Observatory (SDO) sometimes sees just that. Such an event is expected on Sept. 1.
+See the latest sun pictures from SDO
5. Jupiter’s Cousins
Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around. Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What’s up for August? How to spot Mercury, Venus, Mars, Jupiter and Saturn, as well as the and the annual Perseid meteor shower.
Here are some highlights in this month’s nighttime skies as picked by astronomer Jane Houston Jones from our Jet Propulsion Laboratory.
Spot Venus, Mercury and Jupiter and the moon low on the western horizon about 45 minutes after sunset from August 4 through 7. On August 11, look in the south-southwest sky for a second planetary dance as Mars and Saturn are high and easy to see and they are joined by the moon.
The famous and reliably active Perseid meteor shower peaks in the morning hours of August 12. The moon, which paired up so nicely with Mars and Saturn on the 11, is bright enough to blot out some of the meteors, but lucky for you it sets about 1 a.m. on the morning of the 12, just at the peak time for the best Perseid viewing.
But wait, there are more planets, dwarf planets and an asteroid visible this month! Uranus and Neptune and dwarf planet Ceres are visible before dawn in the southern sky. Uranus is visible through binoculars but Neptune and Ceres require a telescope.
Watch the full August “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our solar system is huge, so let us break it down for you. Here are five things you need to know this week:
1. The Lure of the Rings
Scientists and stargazers alike can’t resist the call of Saturn’s rings, or of its moon Titan. Both have been under close scrutiny by the Cassini spacecraft lately, and there are striking new pictures to prove it. Check out the latest images HERE.
2. A New Moon Rises
The Lunar Reconnaissance Orbiter has captured dramatic landscapes on the moon for more than six years. “A New Moon Rises,” now on display at the Smithsonian National Air and Space Museum in Washington, DC, showcases those images ranging from Apollo landing sites to mountains that rise out of the darkness of the lunar poles. See an online version of the exhibit HERE.
3. Around the (Giant) World in (Just Under) 88 Days
The Juno mission is closing in on Jupiter. On July 4, the spacecraft enters orbit around the king of planets. Learn more about Juno HERE.
4. Spiders and Volcanoes and Glaciers, Oh My
The more data that New Horizons spacecraft sends down about Pluto and its moons, the more there is to fascinate explorers, from spider-shaped canyons to signs of glacial flow. Take a peek at the new finds on Pluto HERE.
5. World of Wonders
Hexagonal craters, mysterious mountains, eye-catching bright patches — the dwarf planet Ceres is proving to be an intriguing place. The Dawn mission is looking for clues to how it works. See the latest from Ceres HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Mars is a cold desert world, and is the fourth planet from the sun. It is half the diameter of Earth and has the same amount of dry land. Like Earth, Mars has seasons, polar ice caps, volcanoes, canyons and weather, but its atmosphere is too thin for liquid water to exist for long on the surface. There are signs of ancient floods on the Red Planet, but evidence for water now exists mainly in icy soil and thin clouds.
Earth has one, Mars has two…moons of course! Phobos (fear) and Deimos (panic) are the Red Planet’s two small moons. They are named after the horses that pulled the chariot of the Greek war god Ares, the counterpart to the Roman war god Mars.
The diameter of Mars is 4220 miles (6792 km). That means that the Red Planet is twice as big as the moon, but the Earth is twice as big as Mars.
Since Mars has less gravity than Earth, you would weigh 62% less than you do here on our home planet. Weigh yourself here on the Planets App. What’s the heaviest thing you’ve ever lifted? On Mars, you could have lifted more than twice that! Every 10 pounds on Earth only equals 4 pounds on the Red Planet. Find out why HERE.
Mass is the measurement of the amount of matter something contains. Mars is about 1/10th of the mass of Earth.
Mars and Earth are at their closest point to each other about every two years, with a distance of about 33 million miles between them at that time. The farthest that the Earth and Mars can be apart is: 249 million miles. This is due to the fact that both Mars and Earth have elliptical orbits and Mars’ orbit is tilted in comparison with the Earth’s. They also orbit the sun at different rates.
The temperature on Mars can be as high as 70 degrees Fahrenheit (20 degrees Celsius) or as low as about –225 degrees Fahrenheit (-153 degrees Celsius). How hot or cold the surface varies between day and night and among seasons. Mars is colder than Earth because it is farther from the sun.
You know that onions have layers, but did you know that Mars has layers too? Like Earth, Mars has a crust, a mantle and a core. The same stuff even makes up the planet layers: iron and silicate.
Ever wonder why it’s so hard launching things to space? It’s because the Earth has a log of gravity! Gravity makes things have weight, and the greater the gravity, the more it weights. On Mars, things weigh less because the gravity isn’t as strong.
Take a deep breath. What do you think you just breathed in? Mostly Nitrogen, about a fifth of that breath was Oxygen and the rest was a mix of other gases. To get the same amount of oxygen from one Earth breath, you’d have to take around 14,500 breaths on Mars! With the atmosphere being 100 times less dense, and being mostly carbon dioxide, there’s not a whole lot of oxygen to breathe in.
Mars has about 15% of Earth’s volume. To fill Earth’s volume, it would take over 6 Mars’ volumes.
For more fun Mars facts, visit HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
From Mars to the asteroid belt to Saturn, our hardworking space robots are exploring the solar system. These mechanical emissaries orbit distant worlds or rove across alien landscapes, going places that are too remote or too dangerous for people (for now).
We often show off the pictures that these spacecraft send home, but this week we’re turning that around: here are some of the best pictures of the space robots, taken by other robots (or themselves), in deep space.
1. So Selfless with the Selfies
The Mars Curiosity rover makes breathtaking panoramas of the Martian landscape — and looks good doing it. This mission is famous for the remarkable self portraits of its robotic geologist in action. See more Martian selfies HERE. You can also try this draggable 360 panorama HERE. Find out how the rover team makes these images HERE.
2. Two Spaceships Passing in the Moonlight
In a feat of timing on Jan. 14, 2014, our Lunar Reconnaissance Orbiter caught a snapshot of LADEE, another robotic spacecraft that was orbiting the moon at the time. LADEE zoomed past at a distance of only about five miles below.
3. Bon Voyage, Galileo
The history-making Galileo mission to Jupiter set sail from the cargo bay of another spacecraft, Space Shuttle Atlantis, on Oct. 18, 1989. Get ready for Juno, which is the next spacecraft to arrive at Jupiter in July.
4. Cometary Close-Up
Using a camera on the Philae lander, the Rosetta spacecraft snapped an extraordinary self portrait at comet 67P/Churyumov-Gerasimenko from a distance of about 10 miles. The image captures the side of Rosetta and one of its 14-meter-long solar wings, with the comet in the background. Learn more about Rosetta HERE.
5. Man and Machine
This snapshot captures a remarkable moment in the history of exploration: the one and only time a human met up in space with a robotic forerunner on location. The Surveyor 3 lander helped pave the way for the astronaut footsteps that came a few years later. See the story of Apollo 12 and this unique encounter HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Recent news articles have reported that “newly declassified” audiotapes reveal that Apollo 10 astronauts heard “outer-spacey” music as the spacecraft flew around the far side of the moon in 1969.
While listed as ‘confidential’ in 1969 at the height of the Space Race, Apollo 10 mission transcripts and audio have been publicly available since 1973. Since the Internet did not exist in the Apollo era, we have only recently provided digital files for some of those earlier missions. The Apollo 10 audio clips were uploaded in 2012, but the mission’s audio recordings have been available at the National Archives since the early 1970s.
As for the likely source of the sounds, Apollo 10 Lunar Module Pilot Gene Cernan told us on Monday, ‘I don’t remember that incident exciting me enough to take it seriously. It was probably just radio interference. Had we thought it was something other than that we would have briefed everyone after the flight. We never gave it another thought.’
If you’d like to listen to the audio file, it is available HERE (starting at 2:50).
The full transcript is available HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Not since 1977 has a full moon dawned in the skies on Christmas. But this year, a bright full moon will be an added gift for the holidays.
This full moon, the last of the year, is called the Full Cold Moon because it occurs during the beginning of winter.
Make sure you get outside to check out this rare event because it won’t happen again until 2034!
Here are a few fun facts about the event and our moon:
The moon’s peak this year will occur at 6:11 a.m. EST
As you gaze up at the Christmas moon, take note that we have a spacecraft currently orbiting Earth’s moon. Our Lunar Reconnaissance Orbiter (LRO) mission has been investigating the lunar surface since 2009
More than 100 spacecraft have been launched to explore the moon
Our moon is the only celestial body beyond Earth that has been visited by human beings..so far!
Twelve human beings have walked on the surface of the moon
The moon makes a complete orbit around Earth in 27 Earth days and rotates or spins at the same rate. This causes the moon to keep the same side, or face, towards Earth during the course of its orbit
The moon is the brightest and largest feature in the night sky. Venus is second
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. Dancing with a Star
Our local star, better known as the sun, teems with activity. This month NASA has been tracking regions that burst with magnetic loops. The Solar Dynamics Observatory is one of several space-based assets that keep tabs on the sun daily, watching as charged particles trace the magnetic field, forming bright lines as they emit light in ultraviolet wavelengths.
2. An Idyll for Ida
On Nov. 24, the asteroid Ida makes its closest approach to Earth (at a very safe distance). Ida is the first asteroid found to have its own moon, and the second ever visited by a spacecraft. Its close encounter happened in 1993 as Galileo flew by en route to Jupiter.
3. Moonshine
On Nov. 23, the Cassini spacecraft will fly near Saturn's icy moon Tethys. Several instruments aboard Cassini will collect data, including an eight-frame color image mosaic. Between Nov. 27 and Dec. 2, Cassini will have very limited communications with Earth, because Cassini will enter solar conjunction, when Cassini and Saturn are on the other side of the Sun from Earth.
4. The Moon Will Occult Aldebaran
That may sound ominous, but all it means is that Earth's moon will pass in front of the giant red star Aldebaran on Nov. 26. Aldebaran is the bright "eye" of the constellation Taurus. The event will only be visible in some parts of North America. Details can be found HERE.
5. One Wild Ride, One Year Later
What a year it's been for the Rosetta mission since the Philae lander came to rest on the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. A steady flow of data from the orbiter, together with several days of information sent from the lander, is providing a detailed picture of this remnant from the creation of the solar system.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. It’s Lunacy, Whether by Day or Night
What’s Up in the night sky during November? See all the phases of the moon by day and by night, and learn how to look for the Apollo landing sites. Just after sunset on November 13 and 14, look near the setting sun in the western sky to see the moon as a slender crescent. For more, catch the latest edition of the monthly “What’s Up” Tumblr breakdown.
2. Answer to Longstanding Mars Mystery is Blowin’ in the Wind
What transformed Mars from a warm and wet environment, one that might have supported surface life, to the cold, arid planet it is today? Data from our Mars Atmosphere and Volatile Evolution (MAVEN) mission pins much of the blame on the sun. Streams of charged solar particles crash against the Martian atmosphere, and without much of a magnetic field there to deflect the onslaught, over time the solar wind has stripped the air away.
3. Orbital Maneuvers in the Dark
The New Horizons mission team has set a new record. They recently performed the last in a series of trajectory changes that set the spacecraft on a course for an encounter with a Kuiper Belt object in January 2019. The Kuiper Belt consists of small bodies that orbit the sun a billion miles or more beyond Pluto. These latest course maneuvers were the most distant trajectory corrections ever performed by any spacecraft.
4. Visit Venus (But Not Really — You’d Fry)
Mars isn’t the only available destination. You can visit all the planets, moons and small worlds of the solar system anytime, right from your computer or handheld device. Just peruse our planets page, where you’ll find everything from basic facts about each body to the latest pictures and discoveries. Visit Venus HERE.
5. Titan Then and Now
Nov. 12 marks the 35th anniversary of Voyager 1’s Saturn flyby in 1980. Voyager saw Saturn’s enshrouded, planet-sized moon Titan as a featureless ball. In recent years, the Cassini mission haas revealed Titan in detail as a complex world. The spacecraft has peered beneath its clouds, and even delivered a probe to its encounter, which will include infrared scans, as well as using visible light cameras to look for methane clouds in the atmosphere.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
November weather can be challenging for backyard astronomers, but the moon is a reliable target, even when there are clouds.
Did you know that the moon takes about 29 days to go around the Earth once? It also takes the moon about 29 days to spin on its axis. This causes the same side of the moon to always face Earth.
On Nov. 3, the moon reaches last quarter when it rises at midnight and sets at noon. This is a great time to see the moon in the morning sky.
On Nov. 11, the new moon isn’t visible, because it’s between Earth and the sun, and the unlit side faces Earth. In the days after the new moon, the slender crescent gets bigger and brighter. Look just after sunset on Nov. 13 and 14 near the setting sun in the western sky.
The next phase on Nov. 19 is called the first quarter, because the moon has traveled one quarter of its 29-day orbit around Earth. The moon rises at noon and sets at midnight, so you can see it in the afternoon sky. It will rise higher in the sky after dark. That’s when you can look for the areas where four of the six Apollo missions landed on the moon! You won’t see the landers, flag or footprints, but it’s fun and easy to see these historic places with your own eyes or with binoculars.
To see the area: Look for three dark, smooth maria, or seas. The middle one is the Sea of Tranquility. Apollo 11 landed very near a bright crater on the edge of this mare in 1969. The Apollo 15, 16 and 17 landing areas form the points of a triangle above and below the Apollo 11 site.
On Nov. 25, you can see the full moon phase, which occurs on the 14th day of the lunar cycle. The moon will rise at sunset and will be visible all night long, setting at sunrise.
On Thanksgiving (Nov. 26), the 15-day-old moon will rise an hour after sunset. You may even see some interesting features! And this is a great time to see the impact rays of some of the larger craters.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com